
Network Working Group T. Pauly
Internet-Draft Apple Inc.
Intended status: Standards Track October 24, 2017
Expires: April 27, 2018

 Guidelines for Racing During Connection Establishment
 draft-pauly-taps-guidelines-01

Abstract

 Often, connections created across the Internet have multiple options
 of how to communicate: address families, specific IP addresses,
 network attachments, and application and transport protocols. This
 document describes how an implementation can race multiple options
 during connection establishment, and expose this functionality
 through an API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 27, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Pauly Expires April 27, 2018 [Page 1]

Internet-Draft Connection Establishment Racing October 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 2.1. Endpoint . 3
 2.2. Derived Endpoint . 3
 2.3. Path . 3
 2.4. Connection . 4
 3. Connection Establishment Overview 4
 4. Structuring Options as a Tree 5
 4.1. Branch Types . 7
 4.1.1. Derived Endpoints 7
 4.1.2. Alternate Paths 7
 4.1.3. Protocol Options 8
 4.2. Branching Order-of-Operations 9
 5. Connection Establishment Dynamics 10
 5.1. Building the Tree . 10
 5.2. Racing Methods . 11
 5.2.1. Delayed Racing 11
 5.2.2. Failover . 12
 5.3. Completing Establishment 12
 5.3.1. Determining Successful Establishment 13
 6. API Considerations . 14
 6.1. Handling 0-RTT Data 14
 7. Security Considerations 15
 8. IANA Considerations . 16
 9. Acknowledgments . 16
 10. Informative References 16
 Author’s Address . 17

1. Introduction

 Often, connections created across the Internet have multiple options
 of how to communicate: address families, specific IP addresses,
 network attachments, and application and transport protocols. If an
 application chooses to only attempt one of these options, it may fail
 to connect, or end up using a suboptimal path. If an application
 chooses to attempt one option after another, waiting for each to fail
 or time out, a user of the application may need to wait for a very
 long time before progress is made. And, if an application
 simultaneously attempts all options, it may unnecessarily consume
 significant local or network resources.

 In order to solve this, applications can employ a method of racing
 their various connection establishment options. This approach is

Pauly Expires April 27, 2018 [Page 2]

Internet-Draft Connection Establishment Racing October 2017

 commonly used for racing multiple IP address families, the algorithm
 for which is referred to as "Happy Eyeballs"
 [I-D.ietf-v6ops-rfc6555bis]. However, the approach can apply more
 generally.

 This document describes how an implementation can race multiple
 options during connection establishment, and expose this
 functionality through an API.

2. Terminology

 This document uses specific terminology when discussing connection
 establishment.

2.1. Endpoint

 An identifier for a network service. Generally there is a concept of
 both a local and remote endpoint. Endpoints are the targets of
 network connections. If an endpoint of a given type cannot be
 directly used, it should be resolved into one or more endpoints of
 another type. Examples of endpoint types include:

 o IP address + port

 o Hostname + port

 o Service name + type + domain

 o URI

2.2. Derived Endpoint

 A derived endpoint is an endpoint that is not the original target of
 an API client, but an endpoint created from the original endpoint
 through transformation or lookup. Derivation may take the form of
 hostname resolution into addresses, synthesis between address types,
 or changing to a different endpoint entirely based on a configuration
 requirement. For example, if a proxy server must be used for a
 connection, the endpoint that represents the proxy is a derived
 endpoint.

2.3. Path

 A view of network properties that can be used to communicate to an
 endpoint from the current system. This is sometimes referred to as a
 Provisioning Domain (PvD) [RFC7556]. The path may include properties
 of the addresses and routes being used, the network interfaces being

Pauly Expires April 27, 2018 [Page 3]

Internet-Draft Connection Establishment Racing October 2017

 used, and other metadata about the network learned from configuration
 or negotiation.

2.4. Connection

 A flow of data between two endpoints. A connection is created with a
 target remote endpoint, and a set of parameters indicating client
 preferences for path selection and protocol options.

3. Connection Establishment Overview

 The process of establishing a network connection begins when an
 application expresses intent to communicate with a remote endpoint
 (along with any constraints or requirements it may have on the
 connection). The process can be considered complete once there is at
 least one set of network protocols that have completed any required
 setup to the point that it can transmit and receive the application’s
 data.

 Looking more closely, connection establishment has three required
 steps that must be performed by some entity on a system:

 1. Identifying the endpoint to which the connection should be
 established

 2. Choosing which path or interface to use

 3. Conducting the necessary set of protocol handshakes to establish
 the connection

 The most simple example of this process might involve identifying the
 single IP address to which the application wishes to connect, using
 the system’s current default interface or path, and starting a TCP
 handshake to establish a stream to the specified IP address.
 However, each step may also vary depending on the requirements of the
 connection: if the endpoint is defined as a hostname and port, then
 there may be multiple resolved addresses that are available; there
 may also be multiple interfaces or paths available, other than the
 default system interface; and some protocols may not need any
 transport handshake to be considered "established" (such as UDP),
 while other connections may utilize layered protocol handshakes, such
 as TLS over TCP.

 Whenever an application has multiple options for connection
 establishment, it can view the set of all individual connection
 establishment options as a single, aggregate connection
 establishment. The aggregate set conceptually includes every valid
 combination of endpoints, paths, and protocols. As an example,

Pauly Expires April 27, 2018 [Page 4]

Internet-Draft Connection Establishment Racing October 2017

 consider an application that initiates a TCP connection to a hostname
 + port endpoint, and has two valid interfaces available (Wi-Fi and
 LTE). The hostname resolves to a single IPv4 address on the Wi-Fi
 network, and resolves to the same IPv4 address on the LTE network, as
 well as a single IPv6 address. The aggregate set of connection
 establishment options can be viewed as follows:

Aggregate [Endpoint: www.example.com:80] [Interface: Any] [Protocol: TCP]
 |-> [Endpoint: 192.0.2.1:80] [Interface: Wi-Fi] [Protocol: TCP]
 |-> [Endpoint: 192.0.2.1:80] [Interface: LTE] [Protocol: TCP]
 |-> [Endpoint: 2001:DB8::1.80] [Interface: LTE] [Protocol: TCP]

 Any one of these sub-entries on the aggregate connection attempt
 would satisfy the original application intent. The concern of this
 document is the algorithm defining which of these options to try,
 when, and in what order.

4. Structuring Options as a Tree

 When an implementation responsible for connection establishment needs
 to consider multiple options, it SHOULD logically structure these
 options as a hierarchical tree. Each leaf node of the tree
 represents a single, coherent connection attempt, with an Endpoint, a
 Path, and a set of protocols that can directly negotiate and send
 data on the network. Each node in the tree that is not a leaf
 represents a connection attempt that is either underspecified, or
 else includes multiple distinct options. For example. when
 connecting on an IP network, a connection attempt to a hostname and
 port is underspecified, because the connection attempt requires a
 resolved IP address as its remote endpoint. In this case, the node
 represented by the connection attempt to the hostname is a parent
 node, with child nodes for each IP address. Similarly, an
 application that is allowed to connect using multiple interfaces will
 have a parent node of the tree for the decision between the paths,
 with a branch for each interface.

 The example aggregate connection attempt above can be drawn as a tree
 by grouping the addresses resolved on the same interface into
 branches:

Pauly Expires April 27, 2018 [Page 5]

Internet-Draft Connection Establishment Racing October 2017

 ||
 +==========================+
 | www.example.com:80/Any |
 +==========================+
 // \\
+==========================+ +==========================+
| www.example.com:80/Wi-Fi | | www.example.com:80/LTE |
+==========================+ +==========================+
 || // \\
 +====================+ +====================+ +======================+
 | 192.0.2.1:80/Wi-Fi | | 192.0.2.1:80/LTE | | 2001:DB8::1.80/LTE |
 +====================+ +====================+ +======================+

 The rest of this document will use a notation scheme to represent
 this tree. The parent (or trunk) node of the tree will be
 represented by a single integer, such as "1". Each child of that
 node will have an integer that identifies it, from 1 to the number of
 children. That child node will be uniquely identified by
 concatenating its integer to it’s parents identifier with a dot in
 between, such as "1.1" and "1.2". Each node will be summarized by a
 tuple of three elements: Endpoint, Path, and Protocol. The above
 example can now be written more succinctly as:

 1 [www.example.com:80, Any, TCP]
 1.1 [www.example.com:80, Wi-Fi, TCP]
 1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
 1.2 [www.example.com:80, LTE, TCP]
 1.2.1 [192.0.2.1:80, LTE, TCP]
 1.2.2 [2001:DB8::1.80, LTE, TCP]

 When an application views this aggregate set of connection attempts
 as a single connection establishment, it only will use one of the
 leaf nodes to transfer data. Thus, when a single leaf node becomes
 ready to use, then the entire connection attempt is ready to use by
 the application. Another way to represent this is that every leaf
 node updates the state of its parent node when it becomes ready,
 until the trunk node of the tree is ready, which then notifies the
 application that the connection as a whole is ready to use.

 A connection establishment tree may be degenerate, and only have a
 single leaf node, such as a connection attempt to an IP address over
 a single interface with a single protocol.

 1 [192.0.2.1:80, Wi-Fi, TCP]

 A parent node may also only have one child (or leaf) node, such as a
 when a hostname resolves to only a single IP address.

Pauly Expires April 27, 2018 [Page 6]

Internet-Draft Connection Establishment Racing October 2017

 1 [www.example.com:80, Wi-Fi, TCP]
 1.1 [192.0.2.1:80, Wi-Fi, TCP]

4.1. Branch Types

 There are three types of branching from a parent node into one or
 more child nodes. Any parent node of the tree MUST only use one type
 of branching.

4.1.1. Derived Endpoints

 If a connection originally targets a single endpoint, there may be
 multiple endpoints of different types that can be derived from the
 original. The connection library should order the derived endpoints
 according to application preference and expected performance.

 DNS hostname-to-address resolution is the most common method of
 endpoint derivation. When trying to connect to a hostname endpoint
 on a traditional IP network, the implementation SHOULD send DNS
 queries for both A (IPv4) and AAAA (IPv6) records if both are
 supported on the local link. The algorithm for ordering and racing
 these addresses SHOULD follow the recommendations in Happy Eyeballs
 [I-D.ietf-v6ops-rfc6555bis].

 1 [www.example.com:80, Wi-Fi, TCP]
 1.1 [2001:DB8::1.80, Wi-Fi, TCP]
 1.2 [192.0.2.1:80, Wi-Fi, TCP]
 1.3 [2001:DB8::2.80, Wi-Fi, TCP]
 1.4 [2001:DB8::3.80, Wi-Fi, TCP]

 DNS-Based Service Discovery can also provide an endpoint derivation
 step. When trying to connect to a named service, the client may
 discover one or more hostname and port pairs on the local network
 using multicast DNS. These hostnames should each be treated as a
 branch which can be attempted independently from other hostnames.
 Each of these hostnames may also resolve to one or more addresses,
 thus creating multiple layers of branching.

 1 [term-printer._ipp._tcp.meeting.ietf.org, Wi-Fi, TCP]
 1.1 [term-printer.meeting.ietf.org:631, Wi-Fi, TCP]
 1.1.1 [31.133.160.18.631, Wi-Fi, TCP]

4.1.2. Alternate Paths

 If a client has multiple network interfaces available to it, such as
 mobile client with both Wi-Fi and Cellular connectivity, it can
 attempt a connection over either interface. This represents a branch
 point in the connection establishment. Like with derived endpoints,

Pauly Expires April 27, 2018 [Page 7]

Internet-Draft Connection Establishment Racing October 2017

 the interfaces should be ranked based on preference, system policy,
 and performance. Attempts should be started on one interface, and
 then on other interfaces successively after delays based on expected
 round-trip-time or other available metrics.

 1 [192.0.2.1:80, Any, TCP]
 1.1 [192.0.2.1:80, Wi-Fi, TCP]
 1.2 [192.0.2.1:80, LTE, TCP]

 This same approach applies to any situation in which the client is
 aware of multiple links or views of the network. Multiple Paths,
 each with a coherent set of addresses, routes, DNS server, and more,
 may share a single interface. A path may also represent a virtual
 interface service such as a Virtual Private Network (VPN).

 The list of available paths should be constrained by any requirements
 or prohibitions the application sets, as well as system policy.

4.1.3. Protocol Options

 Differences in possible protocol compositions and options can also
 provide a branching point in connection establishment. This allows
 clients to be resilient to situations in which a certain protocol is
 not functioning on a server or network.

 This approach is commonly used for connections with optional proxy
 server configurations. A single connection may be allowed to use an
 HTTP-based proxy, a SOCKS-based proxy, or connect directly. These
 options should be ranked and attempted in succession.

 1 [www.example.com:80, Any, HTTP/TCP]
 1.1 [192.0.2.8:80, Any, HTTP/HTTP Proxy/TCP]
 1.2 [192.0.2.7:10234, Any, HTTP/SOCKS/TCP]
 1.3 [www.example.com:80, Any, HTTP/TCP]
 1.3.1 [192.0.2.1:80, Any, HTTP/TCP]

 This approach also allows a client to attempt different sets of
 application and transport protocols that may provide preferable
 characteristics when available. For example, the protocol options
 could involve QUIC [I-D.ietf-quic-transport] over UDP on one branch,
 and HTTP/2 [RFC7540] over TLS over TCP on the other:

 1 [www.example.com:443, Any, Any HTTP]
 1.1 [www.example.com:443, Any, QUIC/UDP]
 1.1.1 [192.0.2.1:443, Any, QUIC/UDP]
 1.2 [www.example.com:443, Any, HTTP2/TLS/TCP]
 1.2.1 [192.0.2.1:443, Any, HTTP2/TLS/TCP]

Pauly Expires April 27, 2018 [Page 8]

Internet-Draft Connection Establishment Racing October 2017

 Another example is racing SCTP with TCP:

 1 [www.example.com:80, Any, Any Stream]
 1.1 [www.example.com:80, Any, SCTP]
 1.1.1 [192.0.2.1:80, Any, SCTP]
 1.2 [www.example.com:80, Any, TCP]
 1.2.1 [192.0.2.1:80, Any, TCP]

 Implementations that support racing protocols and protocol options
 SHOULD maintain a history of which protocols and protocol options
 successfully established, on a per-network basis. This information
 can influence future racing decisions to prioritize or prune
 branches.

4.2. Branching Order-of-Operations

 Branch types must occur in a specific order relative to one another
 to avoid creating leaf nodes with invalid or incompatible settings.
 In the example above, it would be invalid to branch for derived
 endpoints (the DNS results for www.example.com) before branching
 between interface paths, since usable DNS results on one network may
 not necessarily be the same as DNS results on another network due to
 local network entities, supported address families, or enterprise
 network configurations. Implementations must be careful to branch in
 an order that results in usable leaf nodes whenever there are
 multiple branch types that could be used from a single node.

 The order of operations for branching, where lower numbers are acted
 upon first, SHOULD be:

 1. Alternate Paths

 2. Protocol Options

 3. Derived Endpoints

 Branching between paths is the first in the list because results
 across multiple interfaces are likely not related to one another:
 endpoint resolution may return different results, especially when
 using locally resolved host and service names, and which protocols
 are supported and preferred may differ across interfaces. Thus, if
 multiple paths are attempted, the overall connection can be seen as a
 race between the available paths or interfaces.

 Protocol options are checked next in order. Whether or not a set of
 protocol, or protocol-specific options, can successfully connect is
 generally not dependent on which specific IP address is used.
 Furthermore, the protocol stacks being attempted may influence or

Pauly Expires April 27, 2018 [Page 9]

Internet-Draft Connection Establishment Racing October 2017

 altogether change the endpoints being used. Adding a proxy to a
 connection’s branch will change the endpoint to the proxy’s IP
 address or hostname. Choosing an alternate protocol may also modify
 the ports that should be selected.

 Branching for derived endpoints is the final step, and may have
 multiple layers of derivation or resolution, such as DNS service
 resolution and DNS hostname resolution.

5. Connection Establishment Dynamics

 The primary goal of the connection establishment process is to
 successfully negotiate a protocol stack to an endpoint over an
 interface--to connect a single leaf node of the tree--with as little
 delay and as few unnecessary connections attempts as possible.
 Optimizing these two factors improves the user experience, while
 minimizing network load.

 This section covers the dynamic aspect of connection establishment.
 While the tree described above is a useful conceptual and
 architectural model, an implementation does not know what the full
 tree may become up front, nor will many of the possible branches be
 used in the common case.

5.1. Building the Tree

 The tree of options is built dynamically, out from the original trunk
 node. Any time that a connection attempt may be made directly to an
 endpoint without further derivation, and without needing to try
 alternate paths or protocol options that have not yet been covered by
 previous branches, the implementation SHOULD treat this as a leaf
 node and connect directly. Any time that an implementation chooses
 to branch between multiple options, it SHOULD determine a preferred
 order between the child nodes based on system policy, expected or
 historical performance, and application preference.

 When multiple paths are available, and permitted by the system’s
 policy, the implementation SHOULD branch between the various paths.
 The list SHOULD be sorted based on the system policies and routes
 (which often determine a "default" interface), preferences expressed
 by the application, and expected performance based on measured or
 advertised properties of each path.

 When multiple protocol options are allowed by an application, and the
 system and implementation identify valid sets of protocols and
 protocol options, the implementation SHOULD branch between these
 sets. This list SHOULD be sorted based on application preference and

Pauly Expires April 27, 2018 [Page 10]

Internet-Draft Connection Establishment Racing October 2017

 expected performance, generally measured in terms of latency and
 bandwidth.

 An implementation will only branch to derive endpoints when
 necessary. This step involves the most external information, as
 endpoint derivation is often a process that requires fetching
 information from the network. Before branching, an implementation
 must first generate the list of derived endpoints. Once this list is
 sufficiently populated to continue, the implementation SHOULD sort
 the list based on preference and expected performance. When these
 derived endpoints are IP addresses, implementations SHOULD use the
 algorithm in [RFC6724] to sort the addresses. In cases where
 additional information can become available after the initial tree
 has been constructed, the implementation SHOULD update the tree to
 reflect new information and orderings if none of the leaf nodes are
 fully established.

5.2. Racing Methods

 There are three different approaches to racing the attempts for
 different nodes of the connection establishment tree:

 1. Immediate

 2. Delayed

 3. Failover

 Each approach is appropriate in different use-cases and branch types.
 However, to avoid consuming unnecessary network resources,
 implementations SHOULD NOT use immediate racing as a default
 approach.

 The timing algorithms for racing SHOULD remain independent across
 branches of the tree. Any timers or racing logic is isolated to a
 given parent node, and is not ordered precisely with regards to other
 children of other nodes.

5.2.1. Delayed Racing

 Delayed racing can be used whenever a single node of the tree has
 multiple child nodes. Based on the order determined when building
 the tree, the first child node will be initiated immediately,
 followed by the next child node after some delay. Once that second
 child node is initiated, the third child node (if present) will begin
 after another delay, and so on until all child nodes have been
 initiated, or one of the child nodes successfully completes its
 negotiation.

Pauly Expires April 27, 2018 [Page 11]

Internet-Draft Connection Establishment Racing October 2017

 Delayed racing attempts occur in parallel. Implementations SHOULD
 NOT terminate an earlier child connection attempt upon starting a
 secondary child.

 The delay between starting child nodes SHOULD be based on the
 properties of the previously started child node. For example, if the
 first child represents an IP address with a known route, and the
 second child represents another IP address, the delay between
 starting the first and second IP addresses can be based on the
 expected retransmission cadence for the first child’s connection
 (derived from historical round-trip-time). Alternatively, if the
 first child represents a branch on a Wi-Fi interface, and the second
 child represents a branch on an LTE interface, the delay should be
 based on the expected time in which the branch for the first
 interface would be able to establish a connection, based on link
 quality and historical round-trip-time.

 Any delay SHOULD have a defined minimum and maximum value based on
 the branch type. Generally, branches between paths and protocols
 should have longer delays than branches between derived endpoints.
 The maximum delay should be considered with regards to how long a
 user is expected to wait for the connection to complete.

 If a child node fails to connect before the delay timer has fired for
 the next child, the next child SHOULD be started immediately.

5.2.2. Failover

 If an implementation or application has a strong preference for one
 branch over another, the branching node may choose to wait until one
 child has failed before starting the next. Failure of a leaf node is
 determined by its protocol negotiation failing or timing out; failure
 of a parent branching node is determined by all of its children
 failing.

 An example in which failover is recommended is a race between a
 protocol stack that uses a proxy and a protocol stack that bypasses
 the proxy. Failover is useful in case the proxy is down or
 misconfigured, but any more aggressive type of racing may end up
 unnecessarily avoiding a proxy that was preferred by policy.

5.3. Completing Establishment

 The process of connection establishment completes when one leaf node
 of the tree has completed negotiation with the remote endpoint
 successfully, or else all nodes of the tree have failed to connect.
 The first leaf node to complete its connection is then used by the
 application to send and receive data.

Pauly Expires April 27, 2018 [Page 12]

Internet-Draft Connection Establishment Racing October 2017

 It is useful to process success and failure throughout the tree by
 child nodes reporting to their parent nodes (towards the trunk of the
 tree). For example, in the following case, if 1.1.1 fails to
 connect, it reports the failure to 1.1. Since 1.1 has no other child
 nodes, it also has failed and reports that failure to 1. Because 1.2
 has not yet failed, 1 is not considered to have failed. Since 1.2
 has not yet started, it is started and the process continues.
 Similarly, if 1.1.1 successfully connects, then it marks 1.1 as
 connected, which propagates to the trunk node 1. At this point, the
 connection as a whole is considered to be successfully connected and
 ready to process application data

 1 [www.example.com:80, Any, TCP]
 1.1 [www.example.com:80, Wi-Fi, TCP]
 1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
 1.2 [www.example.com:80, LTE, TCP]
 ...

 If a leaf node has successfully completed its connection, all other
 attempts SHOULD be made ineligible for use by the application for the
 original request. New connection attempts that involve transmitting
 data on the network SHOULD NOT be started after another leaf node has
 completed successfully, as the connection as a whole has been
 established. An implementation MAY choose to let certain handshakes
 and negotiations complete in order to gather metrics to influence
 future connections. Similarly, an implementation MAY choose to hold
 onto fully established leaf nodes that were not the first to
 establish for use in future connections, but this approach is not
 recommended since those attempts were slower to connect and may
 exhibit less desirable properties.

5.3.1. Determining Successful Establishment

 Implementations may select the criteria by which a leaf node is
 considered to be successfully connected differently on a per-protocol
 basis. If the only protocol being used is a transport protocol with
 a clear handshake, like TCP, then the obvious choice is to declare
 that node "connected" when the last packet of the three-way handshake
 has been received. If the only protocol being used is an
 "unconnected" protocol, like UDP, the implementation may consider the
 node fully "connected" the moment it determines a route is present,
 before sending any packets on the network.

 For protocol stacks with multiple handshakes, the decision becomes
 more nuanced. If the protocol stack involves both TLS and TCP, an
 implementation MAY determine that a leaf node is connected after the
 TCP handshake is complete, or it MAY wait for the TLS handshake to
 complete as well. The benefit of declaring completion when the TCP

Pauly Expires April 27, 2018 [Page 13]

Internet-Draft Connection Establishment Racing October 2017

 handshake finishes, and thus stopping the race for other branches of
 the tree, is that there will be less burden on the network from other
 connection attempts. On the other hand, by waiting until the TLS
 handshake is complete, an implementation avoids the scenario in which
 a TCP handshake completes quickly, but TLS negotiation is either very
 slow or fails altogether in particular network conditions or to a
 particular endpoint.

6. API Considerations

 In general, the internal states and nodes of racing connection
 establishment do not need to be exposed to applications. Instead,
 this process SHOULD be treated as an abstraction of a single,
 aggregate connection establishment behind an API. This places some
 requirements on the API, including:

 o The API must allow the application to specify an un-resolved
 endpoint as the remote side of the connection, such as a URI or
 hostname + port. The application also should be able to provide
 constraints on path selection and protocol features.

 o Any read or write operations cannot take effect until one leaf
 node has been chosen as the connected node. The API needs to
 either expose asynchronous reads and writes, or else prohibit
 reads and writes until the connection is established.

 o The action of starting or initiating the connection may involve
 many network-bound operations, so this operation SHOULD be
 asynchronous.

 o Properties of the connection, such as the remote and local
 addresses, the interface used, and the protocols used, may not be
 queryable until the connection is established.

6.1. Handling 0-RTT Data

 Several protocols allow sending higher-level protocol or application
 data within the first packet of their protocol establishment, such as
 TCP Fast Open [RFC7413] and TLS 1.3 [I-D.ietf-tls-tls13]. This
 approach is referred to as sending Zero-RTT (0-RTT) data. This is a
 desirable property, but poses challenges to an implementation that
 uses racing during connection establishment.

 If the application has 0-RTT data to send in any protocol handshakes,
 it needs to provide this data before the handshakes have begun. When
 racing, this means that the data SHOULD be provided before the
 process of connection establishment has begun. If the API allows the
 application to send 0-RTT data, it MUST provide an interface that

Pauly Expires April 27, 2018 [Page 14]

Internet-Draft Connection Establishment Racing October 2017

 identifies this data as idempotent data. In general, 0-RTT data may
 be replayed (for example, if a TCP SYN contains data, and the SYN is
 retransmitted, the data will be retransmitted as well), but racing
 means that different leaf nodes have the opportunity to send the same
 data independently. If data is truly idempotent, this should be
 permissible.

 Once the application has provided its 0-RTT data, an implementation
 SHOULD keep a copy of this data and provide it to each new leaf node
 that is started and for which a 0-RTT protocol is being used.

 It is also possible that protocol stacks within a particular leaf
 node use 0-RTT handshakes without any idempotent application data.
 For example, TCP Fast Open could use a Client Hello from a TLS as its
 0-RTT data, shortening the cumulative handshake time.

 0-RTT handshakes often rely on previous state, such as TCP Fast Open
 cookies, previously established TLS tickets, or out-of-band
 distributed pre-shared keys (PSKs). Implementations should be aware
 of security concerns around using these tokens across multiple
 addresses or paths when racing. In the case of TLS, any given ticket
 or PSK SHOULD only be used on one leaf node. If implementations have
 multiple tickets available from a previous connection, each leaf node
 attempt MUST use a different ticket. In effect, each leaf node will
 send the same early application data, yet encoded (encrypted)
 differently on the wire.

7. Security Considerations

 See Section 6.1 for security considerations around racing with 0-RTT
 data.

 An attacker that knows a particular device is racing several options
 during connection establishment may be able to block packets for the
 first connection attempt, thus inducing the device to fall back to a
 secondary attempt. This is a problem if the secondary attempts have
 worse security properties that enable further attacks.
 Implementations should ensure that all options have equivalent
 security properties to avoid incentivizing attacks.

 Since results from the network can determine how a connection attempt
 tree is built, such as when DNS returns a list of resolved endpoints,
 it is possible for the network to cause an implementation to consume
 significant on-device resources. Implementations SHOULD limit the
 maximum amount of state allowed for any given node, including the
 number of child nodes, especially when the state is based on results
 from the network.

Pauly Expires April 27, 2018 [Page 15]

Internet-Draft Connection Establishment Racing October 2017

8. IANA Considerations

 This document has no request to IANA.

9. Acknowledgments

 Thanks to Josh Graessley and Stuart Cheshire for their help in the
 design of the original implementation of Happy Eyeballs for Apple
 that began this work.

10. Informative References

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-07 (work
 in progress), October 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),
 July 2017.

 [I-D.ietf-v6ops-rfc6555bis]
 Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", draft-ietf-v6ops-
 rfc6555bis-06 (work in progress), October 2017.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <https://www.rfc-editor.org/info/rfc6724>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015, <https://www.rfc-
 editor.org/info/rfc7540>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <https://www.rfc-editor.org/info/rfc7556>.

Pauly Expires April 27, 2018 [Page 16]

Internet-Draft Connection Establishment Racing October 2017

Author’s Address

 Tommy Pauly
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

Pauly Expires April 27, 2018 [Page 17]

