
TSVWG G. Fairhurst
Internet-Draft T. Jones
Intended status: Informational University of Aberdeen
Expires: May 01, 2018 A. Brunstrom
 Karlstad University
 D. Ros
 Simula Research Laboratory
 October 30, 2017

 The NEAT Interface to Transport Services
 draft-fairhurst-taps-neat-00

Abstract

 The NEAT System provides an example of a system designed to implement
 the TAPS Transport Services. This document presents the transport
 services that the NEAT User API provides to an application or upper-
 layer protocol. It also describes primitives needed to interface to
 the NEAT Policy Manager and how policies can be adjusted to match the
 API behaviour to the properties required by an application or upper-
 layer protocol using the NEAT User API.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 01, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (http://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 1]

Internet-Draft Transport Encryption October 2017

 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. The NEAT Context . 3
 3. NEAT User API Primitives and Events 4
 3.1. NEAT Flow Initialisation 4
 3.2. NEAT Flow Establishment 5
 3.3. NEAT Flow Availability 7
 3.4. Writing and reading data 7
 3.5. Flow Maintenance Primitives 9
 3.6. NEAT Flow Termination 11
 3.7. NEAT Error Events . 12
 4. Security Considerations 12
 5. IANA Considerations . 12
 6. References . 12
 Appendix A. Revision Information 13
 Authors’ Addresses . 13

1. Introduction

 The NEAT (New, Evolutive API and Transport-Layer Architecture for the
 Internet) [NEAT] System provides a call-back driven API to the
 network transport layer. It presents a set of transport services
 [RFC8095] that the NEAT User API provides to an application or upper-
 layer protocol.

 The NEAT System has been implemented in the NEAT User Module. The
 focus of the present document is on the NEAT User API providing
 transport services to applications. This utilises a lower interface
 provided by a Kernel Programming Interface (KPI), to access the
 traditional Socket API or a transport service implemented in
 userspace.

 Applications that use the NEAT User API can provide information about
 the features desired from the transport layer and determine the
 properties of the offered transport service. It is this additional
 information that enables the NEAT System to move beyond the
 constraints of the traditional Socket API, since the stack then
 becomes aware of what the application/user actually desires or
 requires for each traffic flow. The additional information can be
 used to automatically identify which transport components (protocol
 and other transport mechanisms) could be used to realise the required
 transport service. This can drive the selection by the NEAT System
 of the best transport components to use and determine how these need
 to be configured [I-D.grinnemo-taps-he]. In making decisions, the
 NEAT System can utilise policy information provided at configuration,

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 2]

Internet-Draft Transport Encryption October 2017

 previously discovered path characteristics and probing techniques.
 This can be provided by a policy manager acting below the NEAT User
 API.

 The architecture of the NEAT System is presented in [D1.1]. Some
 important features of NEAT compared to the existing sockets API are:

 o Event-driven call-back driven interface, enabling applications to
 be designed so that they respond to events signalling the
 reception of data blocks, ability to send data blocks, or the
 successful transmission of data blocks. This concrete API is
 described in [D2.3].

 o High-level transport interface independent of the selected
 transport protocol, allowing applications to be written without
 depending on the features of specific transport protocols, and
 hence allowing the most suitable transport protocol to be matched
 to the application, based on the transport features an application
 requires [RFC8095].

 o Support for unordered/unreliable and reliable transport services.

 o Explicit support for multistreaming and multipath transport
 protocols and network architectures.

 o A flexible policy framework, allowing applications to describes
 the properties they expect or require of the transport system and
 thus enabling the transport services to be configured to match the
 capabilities of the network that is being used.

 o Ability to work with other network-layer protocols (e.g., network
 signalling) to realise the required transport service.

 The NEAT Library is an open source implementation and is available
 for download [NEAT-GIT]. This also provides tutorials and examples
 of code utilising the API and descriptions of the way in the which
 callback mechanisms can be used to build applications that use this
 interface. Further documentation for the current NEAT System is
 available at the NEAT Project web page, [NEAT-DOC].

2. The NEAT Context

 Applications interact with the network by sending, receiving and
 controlling NEAT Flows.

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 3]

Internet-Draft Transport Encryption October 2017

 The first step in establishing a flow with the NEAT System is to call
 a primitive to create and configure a Context. In the remainder of
 this document, the label P: is used to identify a primitive that may
 be called for a NEAT Context, and the label E: to identify an event
 provided by the NEAT System. Each primitive/event is associated with
 a particular NEAT Context. Most primitives specify the Context and
 provide a handle to the NEAT Flow upon which they operate, and the
 primitives and events for manipulating data can only be used after a
 NEAT Flow has been created.

 P: INIT_CTX()

 The INIT_CTX primitive sets up the datastructures needed by the NEAT
 System.

 After all network operations are completed it can free the context.
 It returns a pointer to the newly allocated and initialized NEAT
 context.

 P: FREE_CTX()

 The FREE_CTX primitive is called when an created context is no longer
 needed. It frees the memory associated with the datastructures used
 by the NEAT System.

3. NEAT User API Primitives and Events

 An application using the NEAT System needs to take the following
 steps to use the network after establishing a context:

 1. Initialisation: create a flow by calling P: INIT_FLOW; and then
 calling P: SET_PROPERTIES to express the application
 requirements. This is used by the NEAT policy manager. Finally,
 it needs to bind call-back functions to respond to the events
 generated by the NEAT System.

 2. Establishment / Availability: Connect the NEAT Flow (either
 actively to a destination endpoint or passively to receive from
 the network).

 3. Writing and reading data: Call primitives to write data or
 respond to events requesting it to read data.

 4. Maintenance: Call maintenance primitives, as needed, to configure
 attributes of the flow (e.g., while writing reading data).

 5. Termination: Close (or abort) the NEAT Flow.

3.1. NEAT Flow Initialisation

 An application needs to create and initialise a flow object before it
 can be used.

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 4]

Internet-Draft Transport Encryption October 2017

 P: INIT_FLOW()

 The INIT_FLOW primitive creates the essential data structures
 required to use a NEAT Flow. The application also needs to then call
 a primitive associate functions with each of the events that it
 wishes to process.

 P: SET_PROPERTIES(property_list)

 property_list : A set of flow properties expressed in JSON.

 Each NEAT Flow has a set of properties that are set at the flow
 initialisation time. The SET_PROPERTIES primitive sets properties
 for the NEAT Flow. Properties are related to Transport Features and
 Services. For instance: link-layer security, transport-layer
 security, certificate verification, certificate and key properties
 can be set at initialisation time are related to a Confidentiality
 Transport Feature. A flow can also have attributes that can be read
 by an application using maintenance primitives after a flow has been
 initialised.

3.2. NEAT Flow Establishment

 P: OPEN(destname port [stream_count])

 destname : a NEAT-conformant name (which can be a DNS name or a
 set of IP addresses) to which to connect.

 port : port number (integer) or service name (string) to which to
 connect.

 stream_count : the number of requested streams to open (integer).
 Note that, if this parameter is not used, the system may still use
 multi-streaming underneath, e.g., by automatically mapping NEAT
 Flows between the same hosts onto streams of an SCTP association.
 Using this parameter disables such automatic functionality.

 Returns: success or failure. If success, it also returns a handle
 for a NEAT Flow.

 The OPEN primitive opens a flow actively for transports that require
 a connection handshake (e.g., TCP, SCTP), and opens the flow
 passively for transports that do not (e.g., UDP, UDP-Lite). Calling
 P:OPEN alone may not actually have an effect "on the wire", i.e., a
 P: ACCEPT at the peer may not be triggered by it. Since it is
 possible that the remote endpoint only returns when data arrives,
 this may only happen after the local host has called P: WRITE. (This
 does not result in a problem, since P: ACCEPT does not block).

 E: on_connected

 The on_connected event indicates a successful connection setup. An

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 5]

Internet-Draft Transport Encryption October 2017

 application that receives this event can then use other primitives
 with this flow.

 P: OPEN_WITH_EARLY_DATA(destname port [stream_count] [flow_group]
 [stream] [pr_method pr_value] [unordered_flag] data datalen)

 destname : defined in the same way as in P: OPEN.

 port : defined in the same way as in P: OPEN.

 stream_count : defined in the same way as in P: OPEN.

 flow_group : defined in the same way as in P: OPEN.

 stream : the number of the stream to be used. At the moment this
 function is called, a connection is still not initialised and the
 protocol may not be known. If the protocol chosen by the NEAT
 Selection components supports only one stream, this parameter will
 be ignored.

 pr_method and pr_value : if these parameters are used, then
 partial reliability is enabled and pr_method must have an integer
 value from 1 to 2 to specify which method to implement partial
 reliability is requested. Value 1 means: pr_value specifies a
 time in milliseconds after which it is unnecessary to send this
 data block. Value 2 means: pr_value specifies a re- quested
 maximum number of attempts to retransmit the data block. If the
 selected NEAT transport does not support partial reliability these
 parameters will be ignored. (See P: WRITE for more information).

 unordered_flag : The data block may be delivered out-of-order if
 this boolean flag is set. Default: false. If the protocol chosen
 by the NEAT Selection components does not support unordered
 delivery, this parameter will be ignored.

 data : the data-block to be sent.

 datalen : the amount (positive integer) of data supplied in the
 data-block.

 Returns: success or failure. If success, it also returns a handle
 for a NEAT Flow and the amount of supplied data that was buffered.

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 6]

Internet-Draft Transport Encryption October 2017

 The OPEN_WITH_EARLY_DATA primitive allows data to be sent at the time
 when a flow is opened. To accommodate TLS 1.3 [I-D.ietf-tls-tls13]
 early data and the TCP Fast Open option [RFC7413], application data
 need to be supplied at the time of opening a NEAT Flow. This
 primitive opens a flow and sends early data if the protocol supports
 it. If the protocol chosen does not support early application data.
 The data will be buffered then sent after connection establishment,
 similar to calling P: WRITE. For this reason, in addition to the
 parameters of P: OPEN, this primitive also needs the same parameters
 as P: WRITE. The supplied data can be delivered multiple times
 (replayed by the network); an application must take this into account
 when using this function. This is commonly known as idempotence.

3.3. NEAT Flow Availability

 This section describes how an application prepares a flow to accept
 communication from another NEAT endpoint.

 P: ACCEPT([name] port [stream_count])

 name : local NEAT-conformant name (which can be a DNS name or a
 set of IP addresses) to constrain acceptance of incoming requests
 to local address(es). If this is missing, requests may arrive at
 any local address.

 port : local port number (integer) or service name (string), to
 constrain acceptance to incoming requests at this port.

 stream_count : the number of requested streams to open (integer).
 Default value: 1.

 Returns: one or more destination IP addresses, information about
 which destination IP address is used by default, inbound stream
 count (= the outbound stream count that was requested on the other
 side), and outbound stream count (= maximum number of allowed
 outbound streams).

 The ACCEPT primitive prepares a NEAT Flow to receive network data.
 UDP and UDP-Lite do not natively support a POSIX-style accept
 mechanism; in this case, NEAT emulates this functionality. P: ACCEPT
 can only return once data arrives, not necessarily after the peer has
 called P: OPEN (The callback-based implementation does not have this
 problem because P: ACCEPT does not block).

 E: on_connected

 The on_connected event indicates a NEAT peer endpoint has connected,
 and other primitives can then be used.

3.4. Writing and reading data

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 7]

Internet-Draft Transport Encryption October 2017

 The primitives in this section refer to actions that may be performed
 an open NEAT Flow, i.e., a NEAT Flow that was either actively
 established or successfully made available for receiving data. It
 permits an application to send and receive data-blocks over the API.

 E: on_writable

 The on_writable event indicates there is buffer space available and
 the application may write new data using P:WRITE.

 P: P: WRITE([stream] [pr_method pr_value] [unordered_flag] data
 datalen)

 stream : the number of the stream to be used (positive integer).
 This can be omitted if the NEAT Flow contains only one stream.

 pr_method and pr_value : if these parameters are used, then
 partial reliability is enabled and pr_method must have an integer
 value from 1 to 2 to specify which method to implement partial
 reliability is requested. Value 1 means: pr_value specifies a
 time in milliseconds after which it is unnecessary to send this
 data-block. Value 2 means: pr_value specifies a requested maximum
 number of attempts to retransmit the data-block. If the selected
 NEAT transport does not support partial reliability these
 parameters will be ignored

 unordered_flag : The data block may be delivered out-of-order if
 this boolean flag is set. Default: false. If the protocol chosen
 by the NEAT Selection components does not support unordered
 delivery, this parameter will be ignored.

 data : The data block to be sent.

 datalen : the amount (positive integer) of data supplied in data.

 The WRITE primitive provide a NEAT Flow with a data block for
 transmission to the remote NEAT peer endpoint (with reliability
 limited by the conditions specified via pr_method, pr_value and the
 transport protocol used). NEAT Flows can support message delineation
 as a property of the NEAT Flow that is set via the INIT_FLOW
 primitive (S. 2.2.1). If a NEAT Flow supports message delineation,
 the data block is a complete message.

 E: on_all_written

 The on_all_written event indicates that all data requested to be
 written using P:WRITE has been sent.

 E: on_send_failure

 The on_send_failure event may be returned instead of E:on_all_written
 when the NEAT System was temporarily unable to complete a P:WRITE
 call, and it not known that all data has been written.

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 8]

Internet-Draft Transport Encryption October 2017

 E: on_readable

 The on_readable event indicates there is data available for the
 application that may be read using P:READ.

 P: READ()

 data : the received data block.

 datalen : the amount of data received.

 Returns: [unordered_flag] [stream_id] data datalen If a message
 arrives out of order, this is indicated by unordered_flag. If the
 underlying transport protocol supports streams, the stream_id
 parameter is set.

 The READ primitive reads a data block from a NEAT Flow into a
 provided buffer. NEAT Flows can support message delineation as a
 property of the NEAT Flow that is set via the INIT_FLOW primitive.
 If a NEAT Flow supports message delineation, the data block is a
 complete message.

3.5. Flow Maintenance Primitives

 The primitives and events below are out-of-band calls that can be
 issued at any time after a NEAT Flow has been opened and before it
 has been terminated.

 P: CHANGE_TIMEOUT(toval)

 toval : the timeout value in seconds.

 The CHANGE_TIMEOUT primitive adjusts the time after which a NEAT Flow
 will terminate if the written data could not be delivered. If this
 is not called, NEAT will make an automatic default choice for the
 timeout.

 P: SET_PRIMARY(dst_IP_address)

 dst_IP_address : the destination IP address that should be used as
 the primary address.

 The SET_PRIMARY primitive is to be used with NEAT Flows that have
 multiple destination IP addresses, with protocols that do not use
 load sharing. It should not have an effect otherwise. This will
 overrule this general per-flow setting. If this is not called, the
 NEAT System will make an automatic default choice for the destination
 IP address.

 P: SET_LOW_WATERMARK(watermark)

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 9]

Internet-Draft Transport Encryption October 2017

 watermark : upper limit of unsent data in the socket buffer, in
 bytes.

 The SET_LOW_WATERMARK primitive allows the application to limit the
 amount of unsent data in the underlying socket buffer. If set, NEAT
 will only execute E: WRITABLE when the amount of unsent data falls
 below the watermark. This allows applications to reduce sender-side
 queuing delay.

 P: SET_MIN_CHECKSUM_COVERAGE(length)

 length : The number of bytes that must be covered by the checksum
 for a datagram to be delivered to the application.

 The SET_MIN_CHECKSUM_COVERAGE primitive allows an application to set
 the minimum acceptable checksum coverage length. This primitive only
 has effect for a received UDP-Lite datagram. A receiver that
 receives a UDP-Lite datagram with a smaller coverage length will not
 hand over the data to the receiving application. This is ignored for
 other protocols, where all data are fully covered by the checksum.

 P: SET_CHECKSUM_COVERAGE(length)

 length : sets the number of bytes covered by the checksum on
 outgoing UDP-Lite datagrams. This is ignored for other protocols,
 where all data are fully covered by the checksum.

 The SET_CHECKSUM_COVERAGE primitive allows an application to set the
 number of bytes covered by the checksum in a UDP-Lite datagram. This
 only has effect when the UDP-Lite protocol is selected.

 P: SET_TTL(ttl)

 ttl : the hop limit to be used for reception.

 The SET_TTL primitive sets the minimum IPv4 TTL or IPv6 Hop Count on
 a datagram that is required for it to be passed to the application.

 E: on_network_status_changed

 The on_network_status_changed event informs the application that
 something has happened in the network; it is safe to ignore without
 harm by many applications. A status code indicates what has happened
 in accordance with a table that includes at least the following three
 values: 1) ICMP error message arrived; 2) Excessive retransmissions;
 3) one or more destination IP addresses have become available/
 unavailable.

 P: GET_PROPERTY(property)

 property : string with a property name.

 Returns: value set to the property by the Policy Manager expressed

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 10]

Internet-Draft Transport Encryption October 2017

 as JSON.

 The GET_PROPERTY primitive allows an application to discover the
 value assigned to a property by the Policy Manager. Properties are
 expressed as part of policies and handled by the NEAT Policy Manager
 and can only be read by an application once a flow has been
 initialised.

 These currently are:

 o Transport parameters: Parameters used (e.g., congestion control
 mechanism, TCP sysctl parameters, . . .). For example, the choice
 of congestion control mechanism is likely to depend on the
 capacity_profile parameter of the INIT_FLOW primitive, if that
 parameter is used -\u002D but does not specify a concrete
 congestion control algorithm, which this read- able property
 returns. More generally, this property gives the application a
 more concrete view of the choices made by the NEAT System.

 o Interface statistics: Interface MTU, addresses, connection type
 (link layer), etc.

 o Path statistics: Experienced RTT, packet loss (rate), jitter,
 throughput, path MTU, etc

 o UsedDSCP: The DSCP assigned to an active NEAT Flow. This may
 differ from the requested DSCP when the QoS has been mapped by the
 policy system

3.6. NEAT Flow Termination

 This set of primitives and events are related to gracefully or
 forcefully closing a NEAT Flow, or being informed about this
 happening.

 P: CLOSE()

 The CLOSE primitive terminates a NEAT Flow after satisfying all the
 requirements that were specified regarding the delivery of data that
 the application has already given to NEAT. If the peer still has data
 to send, it cannot then be received after this call. Data buffered
 by the NEAT System that has not yet been given to the network layer
 will be discarded.

 E: on_close

 The on_close event informs the application that a NEAT Flow was
 successfully closed. This can be received at any time for an active
 NEAT Flow.

 P: ABORT()

 The ABORT primitive terminates a connection without delivering
 remaining data.

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 11]

Internet-Draft Transport Encryption October 2017

 E: on_aborted

 The on_aborted event informs the application that the other side has
 aborted the NEAT Flow. The event can be received at any time for an
 active NEAT Flow.

 E: on_timeout

 The on_timeout event informs the application that the NEAT Flow is
 aborted because the default timeout has been reached before data
 could be delivered. This timeout adjusted by the P: CHANGE_TIMEOUT
 NEAT Flow maintenance primitive. The event can be received at any
 time for an active NEAT Flow.

3.7. NEAT Error Events

 Errors that occur within the NEAT System or that are notified by the
 network result in an on_error event:

 E: on_error

 This event notifies a hard or soft error to the upper layer using the
 NEAT System.

4. Security Considerations

 This document is about the design and usage of a transport API. The
 transport protocols accessed via this API each have security
 considerations.

 The API may be used to request the use of security protocols accessed
 via the transport API.

5. IANA Considerations

 XX RFC ED - PLEASE REMOVE THIS SECTION XXX

 This memo includes no request to IANA.

6. References

 [D1.1] Fairhurst, G., Jones, T., Damjanovic, D., Eckert, K.,
 Grinnemo, K., Hansen, A., Mangiante, S., McManus, P.,
 Papastergiou, G., Ros, D., Vyncke, E., Welzl, M. and M.
 Tuexen, "The NEAT Architecture (D1.1)", 2015, <https://www
 .neat-project.org/wp-content/uploads/2016/02/D1.1.pdf>.

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 12]

Internet-Draft Transport Encryption October 2017

 [D2.3] Khademi, N., Bozakov, Z., Brunstroem, A., Dale, O.,
 Damjanovic, D., Evensen, KR., Fairhurst, G., Fischer, A.,
 Grinnemo, K., Jones, T., Mangiante, S., Petlund, A., Ros,
 D., Ruengeler, I., Stenberg, D., Tuexen, M., Weinrank, F.
 and M. Welzl, "The Final Version of Core Transport System
 (D2.3)", 2017, <https://www.neat-project.org/wp-content/
 uploads/2017/10/D2.3.pdf>.

 [I-D.grinnemo-taps-he]
 Grinnemo, K., Brunstrom, A., Hurtig, P., Khademi, N. and
 Z. Bozakov, "Happy Eyeballs for Transport Selection",
 Internet-Draft draft-grinnemo-taps-he-03, July 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", Internet-Draft draft-ietf-tls-tls13-21, July
 2017.

 [NEAT-DOC]
 Stenberg, D., Weinrank, F., Khademi, N., Dreibholz, T.,
 Jones, T., Bozakov, Z. and O. Dale, "NEAT Programming API
 Documentation", , <http://neat.readthedocs.io/>.

 [NEAT-GIT]
 "NEAT Source Code Repository", , <https://github.com/neat-
 project/neat>.

 [NEAT] "The EU New, Evolutive API and Transport-Layer
 Architecture for the Internet (NEAT) Project", 2017,
 <https://www.neat-project.org/>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S. and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B.Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095, DOI 10.17487/
 RFC8095, March 2017, <https://www.rfc-editor.org/info/
 rfc8095>.

Appendix A. Revision Information

 -00 This is an individual draft for the IETF community, for
 consideration by the IETF TAPS WG.

Authors’ Addresses

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 13]

Internet-Draft Transport Encryption October 2017

 Godred Fairhurst
 University of Aberdeen
 Department of Engineering
 Fraser Noble Building
 Aberdeen, AB24 3UE
 Scotland

 Email: gorry@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk/

 Tom Jones
 University of Aberdeen
 Department of Engineering
 Fraser Noble Building
 Aberdeen, AB24 3UE
 Scotland

 Email: tom@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk/

 Anna Brunstrom
 Karlstad University
 Universitetsgatan 2
 Karlstad, 651 88
 Sweden

 Email: anna.brunstrom@kau.se

 David Ros
 Simula Research Laboratory
 Martin Linges vei 25
 1364 Fornebu
 Oslo,
 Norway

 Email: dros@simula.no

Fairhurst, Jones, BrunstroExpires May 01, 2018 [Page 14]

