
TAPS Working Group P. Tiesel
Internet-Draft T. Enghardt
Intended status: Experimental A. Feldmann
Expires: April 30, 2018 TU Berlin
 October 27, 2017

 Socket Intents
 draft-tiesel-taps-socketintents-01

Abstract

 This document outlines Socket Intents, a concept that allows
 applications to share their knowledge about upcoming communication
 and express their performance preferences in a generic, intuitive
 and, portable way. Using Socket Intents, an application can express
 what it knows, assumes, expects, or wants regarding its network
 communication. The information provided by Socket Intents can be
 used by the network stack to optimize communication in a best-effort
 way.

 Socket Intent can be used to stem against the complexity of
 exploiting transport diversity, e.g., to automate the choice among
 multiple paths, provisioning domains or protocols. By shifting this
 complexity from the application developer to the operating system, it
 enables the use of these transport features to a wider range of
 applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2018.

Tiesel, et al. Expires April 30, 2018 [Page 1]

Internet-Draft SocketIntents October 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Conventions and Definitions 3
 2. Introduction . 3
 3. Problem Statement . 3
 4. Socket Intents Concept 4
 4.1. Interactions between Socket Intents and QoS 5
 5. Socket Intent Types . 5
 6. Initial Socket Intent Types 6
 6.1. Traffic Category . 6
 6.2. Size to be Sent / Received 7
 6.3. Duration . 7
 6.4. Stream Bitrate Sent / Received 7
 6.5. Burstiness . 7
 6.6. Timeliness . 8
 6.7. Disruption Resilience 9
 6.8. Cost Preferences . 9
 7. Implementation Guidelines 10
 8. Security Considerations 10
 8.1. Performance Degradation Attacks 10
 8.2. Information Leakage 11
 9. IANA Considerations . 11
 10. Publications History . 11
 11. Acknowledgements . 11
 12. References . 11
 12.1. Normative References 11
 12.2. Informative References 12
 Appendix A. Usage examples 13
 A.1. Example 1 . 13
 A.2. Example 2 . 13
 A.3. Example 3 . 14
 Appendix B. Changes . 14
 B.1. Since -00 . 14

Tiesel, et al. Expires April 30, 2018 [Page 2]

Internet-Draft SocketIntents October 2017

 Authors’ Addresses . 15

1. Conventions and Definitions

 The words "MUST", "MUST NOT", "SHALL", "SHALL NOT", "SHOULD", and
 "MAY" are used in this document. It’s not shouting; when these words
 are capitalized, they have a special meaning as defined in [RFC2119].

 Association Set, Association, Stream, or Message are used as defined
 in [I-D.tiesel-taps-communitgrany].

2. Introduction

 Despite recent advances in the transport area, the adaption of new
 transport protocols and transport protocol features is slow. In
 practice, this only happens in limited fields as Web browsers or
 within datacenters. The same problem occurs for taking advantage of
 paths or provisioning domains (PvDs). In both cases, the benefits of
 the new transport diversity come at the cost of an increased
 complexity that has to be mastered by the application programmer.

 To enable transport features like TCP fast open [RFC7413] or to
 control how MPTCP [RFC6824] creates subflows requires specialized
 APIs. These APIs are not part of the standard socket API, usually
 not portable, and not available in many programming languages. Using
 them often requires profound knowledge of the transport protocol
 internals.

 To use multiple paths, applications usually have to use their own
 heuristics to select which paths, provisioning domains, or access
 network to use. Choosing the right path is difficult as their
 characteristics differ, e.g., regarding performance. Obtaining the
 necessary information is difficult since it may require special
 privileges and non-portable APIs.

 In all cases mentioned above, an application that wants to take
 advantage of the available transport diversity is faced with
 substantially higher complexity regarding network APIs and networking
 code.

3. Problem Statement

 Application programmers opening a communication channel typically
 know how this channel will be used. There is more information
 available than the protocol and destination address needed to
 establish a communication channel: An application developer has an
 intuition about many aspects of an upcoming communication. These
 intuition may include:

Tiesel, et al. Expires April 30, 2018 [Page 3]

Internet-Draft SocketIntents October 2017

 preferences: whether to optimize for bandwidth, latency, or cost

 characteristics: expected packet rates, byte rates or how many bytes
 will be sent or received.

 expectations: towards path availability or packet loss

 resiliences: whether the application can gracefully handle certain
 error cases

 These preferences, expectations and other information known about the
 upcoming communication should be expressible in an intuitive, generic
 way, that is independent of the network and transport protocol. Its
 representation should be independent of the actual API used for
 network communication and should be expressible in whatever API
 available, e.g., as socket options for BSD sockets or as part of the
 address resolution configuration for Post Sockets
 [I-D.trammell-taps-post-sockets].

 Socket Intents should enable the OS to adjust the communication
 channel according to the application’s intents in a best-effort
 fashion: They should provide the information needed to automatically
 enabling transport features the application can benefit from or help
 choosing the most suitable (combination) of paths based on the
 properties of the access networks or PvD (see [RFC7556], Section 6.2)
 available. The actual implementation is not part of the Socket
 Intents concept, it is left to an OS policy that may choose the best
 transport protocol, default parameters and PvDs available and may
 also try to further optimize wherever possible.

4. Socket Intents Concept

 Socket Intents are pieces of information that allow an application to
 express what they know about the application’s communication. They
 indicate what the application wants to achieve, knows, or assumes in
 general, intuitive terms. An application can use them to annotate
 the characteristics, preferences, and intentions it associates with
 each communication unit. Depending on the API used, Socket Intents
 can be used on a per Association Set, Association, Stream or, Message
 level.

 Socket Intents are optional information that can be considered in a
 best-effort manner. Socket Intents _do not include requirements_,
 such as reliable in-order delivery. Typical examples include desired
 transport characteristics, e.g., low delay, high throughput, or
 minimal cost, as well as expected application behavior, e.g., will
 send 500 bytes. As this information captures the intents of an

Tiesel, et al. Expires April 30, 2018 [Page 4]

Internet-Draft SocketIntents October 2017

 applications and passes them along with the communication socket, we
 call these pieces of information Socket Intents.

 Applications have an incentive to specify their intents as accurately
 as possible to take advantage of the most suitable existing
 resources. Applications are expected to selfishly specify their
 preferences. It is up to the OS’s policy to prevent commitment of
 excessive resources.

4.1. Interactions between Socket Intents and QoS

 Socket Intents are not QoS labels, but have an orthogonal meaning.
 While the purpose of QoS is to specify what an application requires,
 Socket Intents are used to specify what an application knows or
 prefers. Therefore,

 o Socket Intents SHALL be purely advisory.

 o Socket Intents MUST NOT be used to derive IntServ / RSVP style
 guarantees.

 o Socket Intents SHOULD be taken into account on a best-effort basis
 and MAY be used to derive DiffServ Service Classes as described in
 [RFC4594].

5. Socket Intent Types

 Socket Intents are structured as key-value-pairs.

 The key, called short name, specifies the Socket Intent type. It is
 identified by a string of the lower-case characters [a-z], numbers
 [0-9] and the separator "-".

 The namespace for the short names is partitioned as follows:

 o All Socket Intent type not starting with "x-" or "y-" are managed
 by an IANA registry. The assignment of new types requires an RFC
 or expert review (TO BE DECIDED).

 o Socket Intent type starting with "x-" are for experimental use.

 o Private or vendor specific Socket Intent type MUST start with
 "y-[vendor]-".

 Values can be represented as Enum, Int, Float, ASCII-String [RFC0020]
 or a sequence of the aforementioned data types. Implementations
 determine how these types are represented on the respective platform.

Tiesel, et al. Expires April 30, 2018 [Page 5]

Internet-Draft SocketIntents October 2017

 The data type for the individual Socket Intents are determined by the
 document defining the Socket Intent and MUST NOT be changed by an
 implementation. For Enum data types, a list of valid values MUST be
 provided by the document specifying that intent as well as a default
 value that is equivalent to not specifying this intent.

6. Initial Socket Intent Types

 The following sections contain a list or Socket Intent types and
 their possible values. Recommended default values for Enum values
 are marked with an asterisk (*) behind the level name.

6.1. Traffic Category

 The Traffic Category describes the dominating traffic pattern of the
 respective communication unit expected by the application.

 Short name: category

 Applicability: Association Set, Association, Stream

 Data type: Enum

 +---------+---+
 | Level | Description |
 +---------+---+
query	Single request / response style workload, latency bound
control	Long lasting low bandwidth control channel, not
	bandwidth bound
stream	Stream of bytes/messages with steady data rate
bulk	Bulk transfer of large messages, presumably bandwidth
	bound
mixed*	Don’t know or none of the above
 +---------+---+

 Note: Most categories suggest the use of other intents to further
 describe the traffic pattern anticipated, e.g., the bulk category
 suggesting the use of the Size to be Sent intent or the stream
 category suggesting the Stream Bitrate and Duration intents.

Tiesel, et al. Expires April 30, 2018 [Page 6]

Internet-Draft SocketIntents October 2017

6.2. Size to be Sent / Received

 This Intent is used to communicate the expected size of a transfer.

 Short name: send_size / recv_size

 Applicability: Association Set, Association, Stream, Message

 Data type: Int (bytes)

6.3. Duration

 This Intent is used to communicate the expected lifetime of the
 respective communication unit.

 Short name: duration

 Applicability: Association Set, Association, Stream

 Data type: Int (msec)

6.4. Stream Bitrate Sent / Received

 This Intent is used to communicate the bitrate of the respective
 communication unit.

 Short name: send_bitrate / recv_bitrate

 Applicability: Association Set, Association, Stream

 Data type: Int (bits/sec)

6.5. Burstiness

 This Intent describes the anticipated burst characteristics of the
 traffic for this communication unit. It expresses how the traffic
 sent by the application is expected to vary over time, and,
 consequently, how long sequences of consecutively sent packets will
 be. Note that the actual burst characteristics of the traffic at the
 receiver side will depend on the network.

 This Intent can provide hints to the application on what the resource
 usage pattern for this communication unit will look like, which can
 be useful for balancing the requirements of different application.

 Short name: bursts

 Applicability: Association Set, Association, Stream

Tiesel, et al. Expires April 30, 2018 [Page 7]

Internet-Draft SocketIntents October 2017

 Data type: Enum

 +----------------+--+
 | Level | Description |
 +----------------+--+
no_bursts	Application sends traffic at a constant rate
regular_bursts	Application sends bursts of traffic periodically
random_bursts	Application sends bursts of traffic irregularly
bulk	Application sends a bulk of traffic
mixed*	Don’t know or none of the above
 +----------------+--+

6.6. Timeliness

 This Intent describes the desired delay characteristics for this
 communication unit. It provides hints for the OS whether to optimize
 for low delay or for other criteria. There are no hard requirements
 or implied guarantees on whether these requirements can actually be
 satisfied.

 Short name: timeliness

 Applicability: Association Set, Association, Stream, Message

 Data type: Enum

 +-------------+---+
 | Level | Description |
 +-------------+---+
stream	Delay and packet delay variation should be kept as
	low as possible
interactive	Delay should be kept as low as possible, but some
	variation is tolerable
transfer*	Delay and packet delay variation should be
	reasonable, but are not critical
background	Delay and packet delay variation is no concern
 +-------------+---+

Tiesel, et al. Expires April 30, 2018 [Page 8]

Internet-Draft SocketIntents October 2017

6.7. Disruption Resilience

 This Intent describes how an application deals with disruption of its
 communication, e.g. connection loss. It communicates how well the
 application can recover from such disturbance and can have
 implications on how many resources the OS should allocate to failover
 techniques for this particular communication unit.

 Short name: resilience

 Applicability: Association Set, Association, Stream, Message

 Data type: Enum

 +--------------+--+
 | Level | Description |
 +--------------+--+
sensitive	Disruptions result in application failure,
	disrupting user experience
recoverable*	Disruptions are inconvenient for the application,
	but can be recovered from
resilient	Disruptions have minimal impact for the
	application
 +--------------+--+

6.8. Cost Preferences

 This describes the Intents of an Application towards costs cased by
 the respective communication unit. It should guide the OS how to
 handle cost vs. performance and reliability tradeoffs.

 Short name: cost

 Applicability: Association Set, Association, Stream, Message

 Data type: Enum

Tiesel, et al. Expires April 30, 2018 [Page 9]

Internet-Draft SocketIntents October 2017

 +---------------+---+
 | Level | Description |
 +---------------+---+
no_expense	Avoid expensive transports and consider failing
	otherwise
optimize_cost	Prefer inexpensive transports and accept service
	degradation
balance_cost*	Do not bias balancing cost and other criteria
ignore_cost	Ignore cost, choose transport solely based on
	other criteria
 +---------------+---+

 Note: the "no_expense" level implicitly asks the OS to fail
 communication attempts if no inexpensive transports are available.

 Application developers MUST be aware that this also no hard
 requirement and can be ignored or overridden by the OS policy.

7. Implementation Guidelines

 Implementations faced with unknown Socket Intent types SHOULD ignore
 these intents for forward compatibility. The API MAY include a
 parameter to change this behavior and make specifying unknown Socket
 Intent types return an error.

 Invalid values SHOULD return an error to the application.

 For debugging purposes, implementations SHOULD allow to enumerate the
 Socket Intents that are understood by the implementation. They MAY
 expose which of the Socket Intents were considered by the
 implementation.

8. Security Considerations

8.1. Performance Degradation Attacks

 We assume that applications specify their preferences in a selfish,
 but not malicious way and that it is up to the OS to find a
 compromise between demands.

 A malicious application could confuse the OS in a way that leads to
 scheduling traffic with certain Intents on a more expensive
 interface, penalizing this traffic, or even rejecting it. The attack
 vector added by this is negligible: As the malicious application

Tiesel, et al. Expires April 30, 2018 [Page 10]

Internet-Draft SocketIntents October 2017

 could also generate the traffic it claims to intend, it already has a
 much more powerful attack vector.

 As a mitigation, the OS could monitor and compare the intents
 specified with the traffic actually generated and notify the user if
 the usage of Socket Intents is unusual or defective.

8.2. Information Leakage

 Varying the transport or IP layer parameters of packets belonging to
 different Streams or Messages multiplexed in the same encrypted
 association might enable an attacker to gain some ground truth about
 the shares of different kinds of traffic. As this might also be
 implied by packet timings, application developers might weight the
 small additional information disclosure against the possible
 performance gains. Using Socket Intents on Association level can be
 considered safe.

9. IANA Considerations

 The Socket Intents type namespace SHOULD be managed by the IANA
 registry. Details conforming to [RFC5226] are laid out in Section 5,
 the initial types for the registry are described in Section 6.

10. Publications History

 o The original idea of Socket Intents was published in [CoNEXT2013].

 o A performance study "Socket Intents: OS Support for Using Multiple
 Access Networks and its Benefits for Web Browsing" is under
 submission.

11. Acknowledgements

 This work has been supported by Leibniz Prize project funds of DFG -
 German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011 (FKZ
 FE 570/4-1).

12. References

12.1. Normative References

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/info/rfc20>.

Tiesel, et al. Expires April 30, 2018 [Page 11]

Internet-Draft SocketIntents October 2017

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/info/rfc5226>.

12.2. Informative References

 [CoNEXT2013]
 Schmidt, P., Enghardt, T., Khalili, R., and A. Feldmann,
 "Socket intents", Proceedings of the ninth ACM conference
 on Emerging networking experiments and technologies -
 CoNEXT ’13, DOI 10.1145/2535372.2535405, 2013.

 [DASH] International Organization for Standardization, "Dynamic
 adaptive streaming over HTTP (DASH) - Part 1: Media
 presentation description and segment formats", Standard
 ISO/IEC 23009-1:2014 , June 2011,
 <https://www.iso.org/standard/65274.html>.

 [I-D.pauly-taps-guidelines]
 Pauly, T., "Guidelines for Racing During Connection
 Establishment", draft-pauly-taps-guidelines-01 (work in
 progress), October 2017.

 [I-D.tiesel-taps-communitgrany]
 Tiesel, P. and T. Enghardt, "Communication Units
 Granularity Considerations for Multi-Path Aware Transport
 Selection", draft-tiesel-taps-communitgrany-01 (work in
 progress), October 2017.

 [I-D.trammell-taps-post-sockets]
 Trammell, B., Perkins, C., Pauly, T., Kuehlewind, M., and
 C. Wood, "Post Sockets, An Abstract Programming Interface
 for the Transport Layer", draft-trammell-taps-post-
 sockets-03 (work in progress), October 2017.

 [RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration
 Guidelines for DiffServ Service Classes", RFC 4594,
 DOI 10.17487/RFC4594, August 2006,
 <https://www.rfc-editor.org/info/rfc4594>.

Tiesel, et al. Expires April 30, 2018 [Page 12]

Internet-Draft SocketIntents October 2017

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <https://www.rfc-editor.org/info/rfc7556>.

Appendix A. Usage examples

A.1. Example 1

 Consider a cellphone performing an OS upgrade. This process usually
 implies downloading a large file. This is a bulk transfer for which
 the application may already know the file size. Timing is typically
 noncritical and the data can be downloaded as background traffic with
 minimal cost and power overhead. It would not hurt if the TCP
 connection was closed during the transfer as the download can be
 continued.

 For this case, the application should set the "Traffic Category" to
 "bulk", "Timeliness" to "background", and "Application Resilience" to
 "resilient". In addition, "Message Size to be Received" can be
 provided. Finally, the application may set the the "Cost
 Preferences" to "no_expense".

 The OS can use this information and therefore may schedule this
 transfer on a flaky but not traffic-billed WiFi link and may reject
 the connection attempt if no cheap access link is available.

A.2. Example 2

 Consider a user watching non-live video content using MPEG-DASH
 [DASH]. This usually means fetching a stream of video chunks. The
 application should know the size of each chunk and may know the
 bitrate and the duration of each chunk and the whole video.
 Disconnection of the TCP connection should be avoided because that
 might have an effect that is visible to the user.

Tiesel, et al. Expires April 30, 2018 [Page 13]

Internet-Draft SocketIntents October 2017

 For this case, the application should set the "Traffic Category" to
 "stream", the "Timeliness" to "stream", and "Application Resilience"
 to "sensitive". It may also provide the "Stream Bitrate Received"
 and "Duration" expected. Finally, the application may set the the
 "Cost Preferences" to "balance_cost".

 The OS can use this information and, e.g, use MPTCP [RFC6824] if
 available to schedule the traffic on the cheaper link (e.g, WiFi)
 while establishing an additional subflow over an expensive link
 (e.g., LTE). If the desired bandwidth cannot be matched by the
 cheaper link, the more expensive link can be added to satisfy the
 desired bandwidth.

 If the application would set the "Cost Preferences" to
 "optimize_cost", the OS would not schedule traffic on the second
 subflow and the application would reduce the video quality to adapt
 to the available data rate.

A.3. Example 3

 Consider a user managing a remote machine via SSH. This usually
 involves at least one long-lived console session and possibly file
 transfers using SCP or rsync multiplexed on the same association
 (e.g. TCP connection).

 For the packets sent for the console session, the application can set
 the "Traffic Category" to "control", the "Burstiness" to "random
 bursts", the timeliness to "interactive" and the resilience to
 "sensitive". For the packets of the file transfers, SSH may set
 both, the "Traffic Category" and "Burstiness" to "bulk". It may also
 know the size of the transfer and therefore sets "Message Size to be
 Sent" or "Message Size to be Received".

 Assuming there are transport opportunities supporting multiple
 streams in a single association (e.g. SCPT [RFC4960]), the OS can
 use this information to schedule the streams over different links to
 meet their requirements (latency vs. bandwidth). In case the OS has
 to use TCP, it can still optimize by disabling TCP Nagle Algorithm
 for console session related transmissions.

Appendix B. Changes

B.1. Since -00

 o Updates on Terminology (Object -> Message, Flow -> Assocication)

 o More detailed Socket Intent Types specification

Tiesel, et al. Expires April 30, 2018 [Page 14]

Internet-Draft SocketIntents October 2017

 o Added implementation guidelines

 o Many clairfications

 o Fixed Authors and affiliations

Authors’ Addresses

 Philipp S. Tiesel
 TU Berlin
 Marchstr. 23
 Berlin
 Germany

 Email: philipp@inet.tu-berlin.de

 Theresa Enghardt
 TU Berlin
 Marchstr. 23
 Berlin
 Germany

 Email: theresa@inet.tu-berlin.de

 Anja Feldmann
 TU Berlin
 Marchstr. 23
 Berlin
 Germany

 Email: anja@inet.tu-berlin.de

Tiesel, et al. Expires April 30, 2018 [Page 15]

