
TAPS Working Group B. Trammell
Internet-Draft ETH Zurich
Intended status: Informational C. Perkins
Expires: April 30, 2018 University of Glasgow
 T. Pauly
 Apple Inc.
 M. Kuehlewind
 ETH Zurich
 C. Wood
 Apple Inc.
 October 27, 2017

Post Sockets, An Abstract Programming Interface for the Transport Layer
 draft-trammell-taps-post-sockets-03

Abstract

 This document describes Post Sockets, an asynchronous abstract
 programming interface for the atomic transmission of messages in an
 inherently multipath environment. Post replaces connections with
 long-lived associations between endpoints, with the possibility to
 cache cryptographic state in order to reduce amortized connection
 latency. We present this abstract interface as an illustration of
 what is possible with present developments in transport protocols
 when freed from the strictures of the current sockets API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2018.

Trammell, et al. Expires April 30, 2018 [Page 1]

Internet-Draft Post Sockets October 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Abstractions and Terminology 5
 2.1. Message Carrier . 6
 2.2. Message . 8
 2.3. Association . 11
 2.4. Remote . 11
 2.5. Local . 12
 2.6. Configuration . 12
 2.7. Transient . 13
 2.8. Path . 14
 3. Abstract Programming Interface 15
 3.1. Example Connection Patterns 16
 3.1.1. Client-Server . 16
 3.1.2. Client-Server with Happy Eyeballs and 0-RTT
 establishment . 18
 3.1.3. Peer to Peer with Network Address Translation 18
 3.1.4. Multicast Receiver 18
 3.1.5. Association Bootstrapping 19
 3.2. API Dynamics . 20
 4. Implementation Considerations 22
 4.1. Protocol Stack Instance (PSI) 23
 4.2. Message Framing, Parsing, and Serialization 24
 4.3. Message Size Limitations 25
 4.4. Back-pressure . 25
 4.5. Associations, Transients, Racing, and Rendezvous 26
 5. Acknowledgments . 28
 6. References . 28
 6.1. Normative References 28
 6.2. Informative References 28
 Appendix A. Open Issues . 30
 Authors’ Addresses . 30

Trammell, et al. Expires April 30, 2018 [Page 2]

Internet-Draft Post Sockets October 2017

1. Introduction

 The BSD Unix Sockets API’s SOCK_STREAM abstraction, by bringing
 network sockets into the UNIX programming model, allowing anyone who
 knew how to write programs that dealt with sequential-access files to
 also write network applications, was a revolution in simplicity. It
 would not be an overstatement to say that this simple API is the
 reason the Internet won the protocol wars of the 1980s. SOCK_STREAM
 is tied to the Transmission Control Protocol (TCP), specified in 1981
 [RFC0793]. TCP has scaled remarkably well over the past three and a
 half decades, but its total ubiquity has hidden an uncomfortable
 fact: the network is not really a file, and stream abstractions are
 too simplistic for many modern application programming models.

 In the meantime, the nature of Internet access, and the variety of
 Internet transport protocols, is evolving. The challenges that new
 protocols and access paradigms present to the sockets API and to
 programming models based on them inspire the design elements of a new
 approach.

 Many end-user devices are connected to the Internet via multiple
 interfaces, which suggests it is time to promote the paths by which
 two endpoints are connected to each other to a first-order object.
 While implicit multipath communication is available for these
 multihomed nodes in the present Internet architecture with the
 Multipath TCP extension (MPTCP) [RFC6824], MPTCP was specifically
 designed to hide multipath communication from the application for
 purposes of compatibility. Since many multihomed nodes are connected
 to the Internet through access paths with widely different properties
 with respect to bandwidth, latency and cost, adding explicit path
 control to MPTCP’s API would be useful in many situations.

 Another trend straining the traditional layering of the transport
 stack associated with the SOCK_STREAM interface is the widespread
 interest in ubiquitous deployment of encryption to guarantee
 confidentiality, authenticity, and integrity, in the face of
 pervasive surveillance [RFC7258]. Layering the most widely deployed
 encryption technology, Transport Layer Security (TLS), strictly atop
 TCP (i.e., via a TLS library such as OpenSSL that uses the sockets
 API) requires the encryption-layer handshake to happen after the
 transport-layer handshake, which increases connection setup latency
 on the order of one or two round-trip times, an unacceptable delay
 for many applications. Integrating cryptographic state setup and
 maintenance into the path abstraction naturally complements efforts
 in new protocols (e.g. QUIC [I-D.ietf-quic-transport]) to mitigate
 this strict layering.

Trammell, et al. Expires April 30, 2018 [Page 3]

Internet-Draft Post Sockets October 2017

 To meet these challenges, we present the Post-Sockets Application
 Programming Interface (API), described in detail in this work. Post
 is designed to be language, transport protocol, and architecture
 independent, allowing applications to be written to a common abstract
 interface, easily ported among different platforms, and used even in
 environments where transport protocol selection may be done
 dynamically, as proposed in the IETF’s Transport Services working
 group.

 Post replaces the traditional SOCK_STREAM abstraction with a Message
 abstraction, which can be seen as a generalization of the Stream
 Control Transmission Protocol’s [RFC4960] SOCK_SEQPACKET service.
 Messages are sent and received on Carriers, which logically group
 Messages for transmission and reception. For backward compatibility,
 bidirectional byte stream protocols are represented as a pair of
 Messages, one in each direction, that can only be marked complete
 when the sending peer has finished transmitting data.

 Post replaces the notions of a socket address and connected socket
 with an Association with a remote endpoint via set of Paths.
 Implementation and wire format for transport protocol(s) implementing
 the Post API are explicitly out of scope for this work; these
 abstractions need not map directly to implementation-level concepts,
 and indeed with various amounts of shimming and glue could be
 implemented with varying success atop any sufficiently flexible
 transport protocol.

 The key features of Post as compared with the existing sockets API
 are:

 o Explicit Message orientation, with framing and atomicity
 guarantees for Message transmission.

 o Asynchronous reception, allowing all receiver-side interactions to
 be event-driven.

 o Explicit support for multistreaming and multipath transport
 protocols and network architectures.

 o Long-lived Associations, whose lifetimes may not be bound to
 underlying transport connections. This allows associations to
 cache state and cryptographic key material to enable fast
 resumption of communication, and for the implementation of the API
 to explicitly take care of connection establishment mechanics such
 as connection racing [RFC6555] and peer-to-peer rendezvous
 [RFC5245].

Trammell, et al. Expires April 30, 2018 [Page 4]

Internet-Draft Post Sockets October 2017

 o Transport protocol stack independence, allowing applications to be
 written in terms of the semantics best for the application’s own
 design, separate from the protocol(s) used on the wire to achieve
 them. This enables applications written to a single API to make
 use of transport protocols in terms of the features they provide,
 as in [I-D.ietf-taps-transports].

 This work is the synthesis of many years of Internet transport
 protocol research and development. It is inspired by concepts from
 the Stream Control Transmission Protocol (SCTP) [RFC4960], TCP Minion
 [I-D.iyengar-minion-protocol], and MinimaLT [MinimaLT], among other
 transport protocol modernization efforts. We present Post as an
 illustration of what is possible with present developments in
 transport protocols when freed from the strictures of the current
 sockets API. While much of the work for building parts of the
 protocols needed to implement Post are already ongoing in other IETF
 working groups (e.g. MPTCP, QUIC, TLS), we argue that an abstract
 programming interface unifying access all these efforts is necessary
 to fully exploit their potential.

2. Abstractions and Terminology

Trammell, et al. Expires April 30, 2018 [Page 5]

Internet-Draft Post Sockets October 2017

 +===============+
 | Message |
 +===============+
 | ^ | |
 send()| |ready() |initiate() |listen()
 V | V V
 +=======================+ +============+
 | | accept()| |
 | Carrier |<--------| Listener |
 | | | |
 +=======================+ +============+
 |1 | n| | +=========+
 | | |1 | +---| Local |
 | +===============+ +=======================+ | +=========+
 | | | | |---+
 | | Configuration |--| Association | +=========+
 | | | | |-------| Remote |
 | +===============+ +=======================+ +=========+
 | | 1| durable end-to-end
 +-------+ | | state via many paths,
 | | | policies, and prefs
 n| | n|
 +===========+ +==========+
 ephemeral | | | |
 transport & | Transient |-------| Path | properties of
 crypto state | |n 1| | address pair
 +===========+ +==========+

 Figure 1: Abstractions and relationships in Post Sockets

 Post is based on a small set of abstractions, centered around a
 Message Carrier as the entry point for an application to the
 networking API. The relationships among them are shown in
 Figure Figure 1 and detailed in this section.

2.1. Message Carrier

 A Message Carrier (or simply Carrier) is a transport protocol stack-
 independent interface for sending and receiving messages between an
 application and a remote endpoint; it is roughly analogous to a
 socket in the present sockets API.

 Sending a Message over a Carrier is driven by the application, while
 receipt is driven by the arrival of the last packet that allows the
 Message to be assembled, decrypted, and passed to the application.
 Receipt is therefore asynchronous; given the different models for
 asynchronous I/O and concurrency supported by different platforms, it

Trammell, et al. Expires April 30, 2018 [Page 6]

Internet-Draft Post Sockets October 2017

 may be implemented in any number of ways. The abstract API provides
 only for a way for the application to register how it wants to handle
 incoming messages.

 All the Messages sent to a Carrier will be received on the
 corresponding Carrier at the remote endpoint, though not necessarily
 reliably or in order, depending on Message properties and the
 underlying transport protocol stack.

 A Carrier that is backed by current transport protocol stack state
 (such as a TCP connection; see Section 2.7) is said to be "active":
 messages can be sent and received over it. A Carrier can also be
 "dormant": there is long-term state associated with it (via the
 underlying Association; see Section 2.3), and it may be able to
 reactivated, but messages cannot be sent and received immediately.
 Carriers become dormant when the underlying transport protocol stack
 determines that an underlying connection has been lost and there is
 insufficient state in the Association to re-establish it (e.g., in
 the case of a server-side Carrier where the client’s address has
 changed unexpectedly). Passive close can be handled by the
 application via an event on the carrier. Attempting to use a carrier
 after passive close results in an error.

 If supported by the underlying transport protocol stack, a Carrier
 may be forked: creating a new Carrier associated with a new Carrier
 at the same remote endpoint. The semantics of the usage of multiple
 Carriers based on the same Association are application-specific.
 When a Carrier is forked, its corresponding Carrier at the remote
 endpoint receives a fork request, which it must accept in order to
 fully establish the new carrier. Multiple Carriers between endpoints
 are implemented differently by different transport protocol stacks,
 either using multiple separate transport-layer connections, or using
 multiple streams of multistreaming transport protocols.

 To exchange messages with a given remote endpoint, an application may
 initiate a Carrier given its remote (see Section 2.4 and local (see
 Section 2.5) identities; this is an equivalent to an active open.
 There are four special cases of Carriers, as well, supporting
 different initiation and interaction patterns, defined in the
 subsections below.

 o Listener: A Listener is a special case of Message Carrier which
 only responds to requests to create a new Carrier from a remote
 endpoint, analogous to a server or listening socket in the present
 sockets API. Instead of being bound to a specific remote
 endpoint, it is bound only to a local identity; however, its
 interface for accepting fork requests is identical to that for
 fully fledged Carriers.

Trammell, et al. Expires April 30, 2018 [Page 7]

Internet-Draft Post Sockets October 2017

 o Source: A Source is a special case of Message Carrier over which
 messages can only be sent, intended for unidirectional
 applications such as multicast transmitters. Sources cannot be
 forked, and need not accept forks.

 o Sink: A Sink is a special case of Message Carrier over which
 messages can only be received, intended for unidirectional
 applications such as multicast receivers. Sinks cannot be forked,
 and need not accept forks.

 o Responder: A Responder is a special case of Message Carrier which
 may receive messages from many remote sources, for cases in which
 an application will only ever send Messages in reply back to the
 source from which a Message was received. This is a common
 implementation pattern for servers in client-server applications.
 A Responder’s receiver gets a Message, as well as a Source to send
 replies to. Responders cannot be forked, and need not accept
 forks.

2.2. Message

 A Message is the unit of communication between applications.
 Messages can represent relatively small structures, such as requests
 in a request/response protocol such as HTTP; relatively large
 structures, such as files of arbitrary size in a filesystem; and
 structures of indeterminate length, such as a stream of bytes in a
 protocol like TCP.

 In the general case, there is no mapping between a Message and
 packets sent by the underlying protocol stack on the wire: the
 transport protocol may freely segment messages and/or combine
 messages into packets. However, a message may be marked as
 immediate, which will cause it to be sent in a single packet when
 possible.

 Content may be sent and received either as Complete or Partial
 Messages. Dealing with Complete Messages should be preferred for
 simplicity whenever possible based on the underlying protocol. It is
 always possible to send Complete Messages, but only protocols that
 have a fixed maximum message length may allow clients to receive
 Messages using an API that guarantees Complete Messages. Sending and
 receiving Partial Messages (that is, a Message whose content spans
 multiple calls or callbacks) is always possible.

 To send a Message, either Complete or Partial, the Message content is
 passed into the Carrier, and client provides a set of callbacks to
 know when the Message was delivered or acknowledged. The client of
 the API may use the callbacks to pace the sending of Messages.

Trammell, et al. Expires April 30, 2018 [Page 8]

Internet-Draft Post Sockets October 2017

 To receive a Message, the client of the API schedules a completion to
 be called when a Complete or Partial Message is available. If the
 client is willing to accept Partial Messages, it can specify the
 minimum incomplete Message length it is willing to receive at once,
 and the maximum number of bytes it is willing to receive at once. If
 the client wants Complete Messages, there are no values to tune. The
 scheduling of the receive completion indicates to the Carrier that
 there is a desire to receive bytes, effectively creating a "pull
 model" in which backpressure may be applied if the client is not
 receiving Messages or Partial Messages quickly enough to match the
 peer’s sending rate. The Carrier may have some minimal buffer of
 incoming Messages ready for the client to read to reduce latency.

 When receiving a Complete Message, the entire content of the Message
 must be delivered at once, and the Message is not delivered at all if
 the full Message is not received. This implies that both the sending
 and receiving endpoint, whether in the application or the carrier,
 must guarantee storage for the full size of a Message.

 Partial Messages may be sent or received in several stages, with a
 handle representing the total Message being associated with each
 portion of the content. Each call to send or receive also indicates
 whether or not the Message is now complete. This approach is
 necessary whenever the size of the Message does not have a known
 bound, or the size is too large to process and hold in memory.
 Protocols that only present a concept of byte streams represent their
 data as single Messages with unknown bounds. In the case of TCP, the
 client will receive a single Message in pieces using the Partial
 Message API, and that Message will only be marked as complete when
 the peer has sent a FIN.

 Messages are sent over and received from Message Carriers (see
 Section 2.1).

 On sending, Messages have properties that allow the application to
 specify its requirements with respect to reliability, ordering,
 priority, idempotence, and immediacy; these are described in detail
 below. Messages may also have arbitrary properties which provide
 additional information to the underlying transport protocol stack on
 how they should be handled, in a protocol-specific way. These stacks
 may also deliver or set properties on received messages, but in the
 general case a received messages contains only a sequence of ordered
 bytes. Message properties include:

 o Lifetime and Partial Reliability: A Message may have a "lifetime"
 - a wall clock duration before which the Message must be available
 to the application layer at the remote end. If a lifetime cannot
 be met, the Message is discarded as soon as possible. Messages

Trammell, et al. Expires April 30, 2018 [Page 9]

Internet-Draft Post Sockets October 2017

 without lifetimes are sent reliably if supported by the transport
 protocol stack. Lifetimes are also used to prioritize Message
 delivery.

 There is no guarantee that a Message will not be delivered after
 the end of its lifetime; for example, a Message delivered over a
 strictly reliable transport will be delivered regardless of its
 lifetime. Depending on the transport protocol stack used to
 transmit the message, these lifetimes may also be signalled to
 path elements by the underlying transport, so that path elements
 that realize a lifetime cannot be met can discard frames
 containing the Messages instead of forwarding them.

 o Priority: Messages have a "niceness" - a priority among other
 messages sent over the same Carrier in an unbounded hierarchy most
 naturally represented as a non-negative integer. By default,
 Messages are in niceness class 0, or highest priority. Niceness
 class 1 Messages will yield to niceness class 0 Messages sent over
 the same Carrier, class 2 to class 1, and so on. Niceness may be
 translated to a priority signal for exposure to path elements
 (e.g. DSCP code point) to allow prioritization along the path as
 well as at the sender and receiver. This inversion of normal
 schemes for expressing priority has a convenient property:
 priority increases as both niceness and lifetime decrease. A
 Message may have both a niceness and a lifetime - Messages with
 higher niceness classes will yield to lower classes if resource
 constraints mean only one can meet the lifetime.

 o Dependence: A Message may have "antecedents" - other Messages on
 which it depends, which must be delivered before it (the
 "successor") is delivered. The sending transport uses deadlines,
 niceness, and antecedents, along with information about the
 properties of the Paths available, to determine when to send which
 Message down which Path.

 o Idempotence: A sending application may mark a Message as
 "idempotent" to signal to the underlying transport protocol stack
 that its application semantics make it safe to send in situations
 that may cause it to be received more than once (i.e., for 0-RTT
 session resumption as in TCP Fast Open, TLS 1.3, and QUIC).

 o Immediacy: A sending application may mark a Message as "immediate"
 to signal to the underlying transport protocol stack that its
 application semantics require it to be placed in a single packet,
 on its own, instead of waiting to be combined with other messages
 or parts thereof (i.e., for media transports and interactive
 sessions with small messages).

Trammell, et al. Expires April 30, 2018 [Page 10]

Internet-Draft Post Sockets October 2017

 Senders may also be asynchronously notified of three events on
 Messages they have sent: that the Message has been transmitted, that
 the Message has been acknowledged by the receiver, or that the
 Message has expired before transmission/acknowledgement. Not all
 transport protocol stacks will support all of these events.

2.3. Association

 An Association contains the long-term state necessary to support
 communications between a Local (see Section 2.5) and a Remote (see
 Section 2.4) endpoint, such as trust model information, including
 pinned public keys or anchor certificates, cryptographic session
 resumption parameters, or rendezvous information. It uses
 information from the Configuration (see Section 2.6) to constrain the
 selection of transport protocols and local interfaces to create
 Transients (see Section 2.7) to carry Messages; and information about
 the paths through the network available available between them (see
 Section 2.8).

 All Carriers are bound to an Association. New Carriers will reuse an
 Association if they can be carried from the same Local to the same
 Remote over the same Paths; this re-use of an Association may implies
 the creation of a new Transient.

 Associations may exist and be created without a Carrier. This may be
 done if peer cryptographic state such as a pre-shared key is
 established out-of-band. Thus, Associations may be created without
 the need to send application data to a peer, that is, without a
 Carrier. Associations are mutable. Association state may expire
 over time, after which it is removed from the Association, and
 Transients may export cryptographic state to store in an Association
 as needed. Moreover, this state may be exported directly into the
 Association or modified before insertion. This may be needed to
 diversify ephemeral Transient keying material from the longer-term
 Association keying material.

 A primary use of Association state is to allow new Associations and
 their derived Carriers to be quickly created without performing in-
 band cryptographic handshakes. See [I-D.kuehlewind-taps-crypto-sep]
 for more details about this separation.

2.4. Remote

 A Remote represents information required to establish and maintain a
 connection with the far end of an Association: name(s), address(es),
 and transport protocol parameters that can be used to establish a
 Transient; transport protocols to use; trust model information,
 inherited from the relevant Association, used to identify the remote

Trammell, et al. Expires April 30, 2018 [Page 11]

Internet-Draft Post Sockets October 2017

 on connection establishment; and so on. Each Association is
 associated with a single Remote, either explicitly by the application
 (when created by the initiation of a Carrier) or a Listener (when
 created by forking a Carrier on passive open).

 A Remote may be resolved, which results in zero or more Remotes with
 more specific information. For example, an application may want to
 establish a connection to a website identified by a URL
 https://www.example.com. This URL would be wrapped in a Remote and
 passed to a call to initiate a Carrier. The first pass resolution
 might parse the URL, decomposing it into a name, a transport port,
 and a transport protocol to try connecting with. A second pass
 resolution would then look up network-layer addresses associated with
 that name through DNS, and store any certificates available from
 DANE. Once a Remote has been resolved to the point that a transport
 protocol stack can use it to create a Transient, it is considered
 fully resolved.

2.5. Local

 A Local represents all the information about the local endpoint
 necessary to establish an Association or a Listener. It encapsulates
 the Provisioning Domain (PvD) of a single interface in the multiple
 provisioning domain architecture [RFC7556], and adds information
 about the service endpoint (transport protocol port), and, per
 [I-D.pauly-taps-transport-security], cryptographic identities
 (certificates and associated private keys) bound to this endpoint.

2.6. Configuration

 A Configuration encapsulates an application’s preferences around Path
 selection and protocol options.

 Each Association has exactly one Configuration, and all Carriers
 belonging to that Association share the same Configuration.

 The application cannot modify the Configuration for a Carrier or
 Association once it is set. If a new set of options needs to be
 used, then the application needs a new Carrier or Association
 instance. This is necessary to ensure that a single Carrier can
 consistently track the Paths and protocol options it uses, since it
 is usually not possible to modify these properties without breaking
 connectivity.

 To influence Path selection, the application can configure a set of
 requirements, preferences, and restrictions concerning which Paths
 may be selected by the Association to use for creating Transients
 between a Local and a Remote. For example, a Configuration can

Trammell, et al. Expires April 30, 2018 [Page 12]

Internet-Draft Post Sockets October 2017

 specify that the application prefers Wi-Fi access over LTE when
 roaming on a foreign LTE network, due to monetary cost to the user.

 The Association uses the Configuration’s Path preferences as a key
 part of determining the Paths to use for its Transients. The
 Configuration is provided as input when examining the complete list
 of available Paths on the system (to limit the list, or order the
 Paths by preference). The system’s policy will further restrict and
 modify the Path that is ultimately selected, using other aspects of
 the Configuration (protocol options and originating application) to
 select the most appropriate Path.

 To influence protocol selection and options, the Configuration
 contains one or more allowed Protocol Stack Configurations. Each of
 these is comprised of application- and transport-layer protocols that
 may be used together to communicate to the Remote, along with any
 protocol-specific options. For example, a Configuration could
 specify two alternate, but equivalent, protocol stacks: one using
 HTTP/2 over TLS over TCP, and the other using QUIC over UDP.
 Alternatively, the Configuration could specify two protocol stacks
 with the same protocols, but different protocol options: one using
 TLS with TLS 1.3 0-RTT enabled and TCP with TCP Fast-Open enabled,
 and one using TLS with out 0-RTT and TCP without TCP Fast-Open.

 Protocol-specific options within the Configuration include trust
 settings and acceptable cryptographic algorithms to be used by
 security protocols. These may be configured for specific protocols
 to allow different settings for each (such as between TLS over TCP
 and TLS for use with QUIC), or set as default security settings on
 the Configuration to be used by any protocol that needs to evaluate
 trust. Trust settings may include certificate anchors and
 certificate pinning options.

2.7. Transient

 A Transient represents a binding between a Carrier and the instance
 of the transport protocol stack that implements it. As an
 Association contains long-term state for communications between two
 endpoints, a Transient contains ephemeral state for a single
 transport protocol over a one or more Paths at a given point in time.

 A Carrier may be served by multiple Transients at once, e.g. when
 implementing multipath communication such that the separate paths are
 exposed to the API by the underlying transport protocol stack. Each
 Transient serves only one Carrier, although multiple Transients may
 share the same underlying protocol stack; e.g. when multiplexing
 Carriers over streams in a multistreaming protocol.

Trammell, et al. Expires April 30, 2018 [Page 13]

Internet-Draft Post Sockets October 2017

 Transients are generally not exposed by the API to the application,
 though they may be accessible for debugging and logging purposes.

2.8. Path

 A Path represents information about a single path through the network
 used by an Association, in terms of source and destination network
 and transport layer addresses within an addressing context, and the
 provisioning domain [RFC7556] of the local interface. This
 information may be learned through a resolution, discovery, or
 rendezvous process (e.g. DNS, ICE), by measurements taken by the
 transport protocol stack, or by some other path information discovery
 mechanism. It is used by the transport protocol stack to maintain
 and/or (re-)establish communications for the Association.

 The set of available properties is a function of the transport
 protocol stacks in use by an association. However, the following
 core properties are generally useful for applications and transport
 layer protocols to choose among paths for specific Messages:

 o Maximum Transmission Unit (MTU): the maximum size of an Message’s
 payload (subtracting transport, network, and link layer overhead)
 which will likely fit into a single frame. Derived from signals
 sent by path elements, where available, and/or path MTU discovery
 processes run by the transport layer.

 o Latency Expectation: expected one-way delay along the Path.
 Generally provided by inline measurements performed by the
 transport layer, as opposed to signaled by path elements.

 o Loss Probability Expectation: expected probability of a loss of
 any given single frame along the Path. Generally provided by
 inline measurements performed by the transport layer, as opposed
 to signaled by path elements.

 o Available Data Rate Expectation: expected maximum data rate along
 the Path. May be derived from passive measurements by the
 transport layer, or from signals from path elements.

 o Reserved Data Rate: Committed, reserved data rate for the given
 Association along the Path. Requires a bandwidth reservation
 service in the underlying transport protocol stack.

 o Path Element Membership: Identifiers for some or all nodes along
 the path, depending on the capabilities of the underlying network
 layer protocol to provide this.

Trammell, et al. Expires April 30, 2018 [Page 14]

Internet-Draft Post Sockets October 2017

 Path properties are generally read-only. MTU is a property of the
 underlying link-layer technology on each link in the path; latency,
 loss, and rate expectations are dynamic properties of the network
 configuration and network traffic conditions; path element membership
 is a function of network topology. In an explicitly multipath
 architecture, application and transport layer requirements can be met
 by having multiple paths with different properties to select from.
 Transport protocol stacks can also provide signaling to devices along
 the path, but this signaling is derived from information provided to
 the Message abstraction.

3. Abstract Programming Interface

 We now turn to the design of an abstract programming interface to
 provide a simple interface to Post’s abstractions, constrained by the
 following design principles:

 o Flexibility is paramount. So is simplicity. Applications must be
 given as many controls and as much information as they may need,
 but they must be able to ignore controls and information
 irrelevant to their operation. This implies that the "default"
 interface must be no more complicated than BSD sockets, and must
 do something reasonable.

 o Reception is an inherently asynchronous activity. While the API
 is designed to be as platform-independent as possible, one key
 insight it is based on is that an Message receiver’s behavior in a
 packet-switched network is inherently asynchronous, driven by the
 receipt of packets, and that this asynchronicity must be reflected
 in the API. The actual implementation of receive and event
 handling will need to be aligned to the method a given platform
 provides for asynchronous I/O.

 o A new API cannot be bound to a single transport protocol and
 expect wide deployment. As the API is transport-independent and
 may support runtime transport selection, it must impose the
 minimum possible set of constraints on its underlying transports,
 though some API features may require underlying transport features
 to work optimally. It must be possible to implement Post over
 vanilla TCP in the present Internet architecture.

 The API we design from these principles is centered around a Carrier,
 which can be created actively via initiate() or passively via a
 listen(); the latter creates a Listener from which new Carriers can
 be accept()ed. Messages may be created explicitly and passed to this
 Carrier, or implicitly through a simplified interface which uses
 default message properties (reliable transport without priority or

Trammell, et al. Expires April 30, 2018 [Page 15]

Internet-Draft Post Sockets October 2017

 deadline, which guarantees ordered delivery over a single Carrier
 when the underlying transport protocol stack supports it).

 For each connection between a Local and a Remote a new Carrier is
 created and destroyed when the connection is closed. However, a new
 Carrier may use an existing Association if present for the requested
 Local-Remote pair and permitted by the PolicyContext that can be
 provided at Carrier initiation. Further the system-wide
 PolicyContext can contain more information that determine when to
 create or destroy Associations other than at Carrier initiation.
 E.g. an Association can be created at system start, based on the
 configured PolicyContext or also by a manual action of an single
 application, for Local-Remote pairs that are known to be likely used
 soon, and to pre-establish, e.g., cryptographic context as well as
 potentially collect current information about path capabilities.
 Every time an actual connection with a specific PSI is established
 between the Local and Remote, the Association learns new Path
 information and stores them. This information can be used when a new
 transient is created, e.g. to decide which PSI to use (to provide the
 highest probably for a successful connection attempt) or which PSIs
 to probe for (first). A Transient is created when an application
 actually sends a Message over a Carrier. As further explained below
 this step can actually create multiple transients for probing or
 assign a new transient to an already active PSI, e.g. if multi-
 streaming is provided and supported for these kind of use on both
 sides.

3.1. Example Connection Patterns

 Here, we illustrate the usage of the API for common connection
 patterns. Note that error handling is ignored in these illustrations
 for ease of reading.

3.1.1. Client-Server

 Here’s an example client-server application. The server echoes
 messages. The client sends a message and prints what it receives.

 The client in Figure 2 connects, sends a message, and sets up a
 receiver to print messages received in response. The carrier is
 inactive after the Initiate() call; the Send() call blocks until the
 carrier can be activated.

Trammell, et al. Expires April 30, 2018 [Page 16]

Internet-Draft Post Sockets October 2017

 // connect to a server given a remote
 func sayHello() {

 carrier := Initiate(local, remote)

 carrier.Send([]byte("Hello!"))
 carrier.Ready(func (msg InMessage) {
 fmt.Println(string([]byte(msg))
 return false
 })
 carrier.Close()
 }

 Figure 2: Example client

 The server in Figure 3 creates a Listener, which accepts Carriers and
 passes them to a server. The server echos the content of each
 message it receives.

 // run a server for a specific carrier, echo all its messages
 func runMyServerOn(carrier Carrier) {
 carrier.Ready(func (msg InMessage) {
 carrier.Send(msg)
 })
 }

 // accept connections forever, spawn servers for them
 func acceptConnections() {
 listener := Listen(local)
 listener.Accept(func(carrier Carrier) bool {
 go runMyServerOn(carrier)
 return true
 })
 }

 Figure 3: Example server

 The Responder allows the server to be significantly simplified, as
 shown in Figure 4.

 func echo(msg InMessage, reply Sink) {
 reply.Send(msg)
 }

 Respond(local, echo)

 Figure 4: Example responder

Trammell, et al. Expires April 30, 2018 [Page 17]

Internet-Draft Post Sockets October 2017

3.1.2. Client-Server with Happy Eyeballs and 0-RTT establishment

 The fundamental design of a client need not change at all for happy
 eyeballs [RFC6555] (selection of multiple potential protocol stacks
 through connection racing); this is handled by the Post Sockets
 implementation automatically. If this connection racing is to use
 0-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client
 must mark the outgoing message as idempotent.

// connect to a server given a remote and send some 0-RTT data
func sayHelloQuickly() {

 carrier := Initiate(local, remote)

 carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, nil
, nil, nil)
 carrier.Ready(func (msg InMessage) {
 fmt.Println(string([]byte(msg)))
 return false
 })
 carrier.Close()
}

3.1.3. Peer to Peer with Network Address Translation

 In the client-server examples shown above, the Remote given to the
 Initiate call refers to the name and port of the server to connect
 to. This need not be the case, however; a Remote may also refer to
 an identity and a rendezvous point for rendezvous as in ICE
 [RFC5245]. Here, each peer does its own Initiate call
 simultaneously, and the result on each side is a Carrier attached to
 an appropriate Association.

3.1.4. Multicast Receiver

 A multicast receiver is implemented using a Sink attached to a Local
 encapsulating a multicast address on which to receive multicast
 datagrams. The following example prints messages received on the
 multicast address forever.

 func receiveMulticast() {
 sink = NewSink(local)
 sink.Ready(func (msg InMessage) {
 fmt.Println(string([]byte(msg)))
 return true
 })
 }

Trammell, et al. Expires April 30, 2018 [Page 18]

Internet-Draft Post Sockets October 2017

3.1.5. Association Bootstrapping

 Here, we show how Association state may be initialized without a
 carrier. The goal is to create a long-term Association from which
 Carriers may be derived and, if possible, used immediately. Per
 [I-D.pauly-taps-transport-security], a first step is to specify trust
 model constraints, such as pinned public keys and anchor
 certificates, which are needed to create Remote connections.

 We begin by creating shared security parameters that will be used
 later for creating a remote connection.

 // create security parameters with a set of trusted certificates
 func createParameters(trustedCerts []Certificate) Parameters {
 parameters := Parameters()
 parameters = parameters.SetTrustedCerts(trustedCerts)
 return parameters
 }

 Using these statically configured parameters, we now show how to
 create an Association between a Local and Remote using these
 parameters.

// create an Association using shared parameters
func createAssociation(local Local, remote Remote, parameters Parameters) Associ
ation {
 association := NewAssociation(local, remote, parameters)
 return association
}

 We may also create an Association with a pre-shared key configured
 out-of-band.

// create an Association using a pre-shared key
func createAssociationWithPSK(local Local, remote Remote, parameters Parameters,
 preSharedKey []byte) Association {
 association := NewAssociation(local, remote, parameters)
 association = association.SetPreSharedKey(preSharedKey)
 return association
}

 We now show how to create a Carrier from an existing, pre-configured
 Association. This Association may or may not contain shared
 cryptographic static between the Local and Remote, depending on how
 it was configured.

Trammell, et al. Expires April 30, 2018 [Page 19]

Internet-Draft Post Sockets October 2017

// open a connection to a server using an existing Association and send some dat
a,
// which will be sent early if possible.
func sayHelloWithAssociation(association Association) {
 carrier := association.Initiate()

 carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, nil
, nil, nil)
 carrier.Ready(func (msg InMessage) {
 fmt.Println(string([]byte(msg)))
 return false
 })
 carrier.Close()
}

3.2. API Dynamics

 As Carriers provide the central entry point to Post, they are key to
 API dynamics. The lifecycle of a carrier is shown in Figure 5.
 Carriers are created by active openers by calling Initiate() given a
 Local and a Remote, and by passive openers by calling Listen() given
 a Local; the .Accept() method on the listener Carrier can then be
 used to create active carriers. By default, the underlying
 Association is automatically created and managed by the underlying
 API. This underlying Association can be accessed by the Carrier’s
 .Association() method. Alternately, an association can be explicitly
 created using NewAssociation(), and a Carrier on the association may
 be accessed or initiated by calling the association’s .Initiate()
 method.

 Once a Carrier has been created (via Initiate(),
 Association.Initiate(), NewSource(), NewSink(), or
 Listen()/Accept()), it may be used to send and receive Messages. The
 existence of a Carrier does not imply the existence of an active
 Transient or associated transport-layer connection; these may be
 created when the carrier is, or may be deferred, depending on the
 network environment, configuration, and protocol stacks available.

Trammell, et al. Expires April 30, 2018 [Page 20]

Internet-Draft Post Sockets October 2017

 Listen(local) Initiate(local,remote) NewSource(local,remote)
 | | or NewSink(local)
 [Carrier] | |
 [(listener)] +--------------------+
 | V
 .Accept()-----------> [Carrier] -+----------> .Close()
 | ^ | close [Carrier]
 | | +- event -> [(closed)]
 | |
 .Association() .Carriers()
 | .Initiate()
 V |
 [Association]
 ^
 |
 NewAssociation(local,remote)

 Figure 5: Carrier and Association Life Cycle

 Access to more detailed information is possible through accessors on
 Carriers and Associations, as shown in Figure 6. The set of
 currently active Transients can be accessed through the Carrier’s
 .Transients() methods. The active path(s) used by a Transient can be
 accessed through the Transient’s .Paths() method, and the set of all
 paths for which properties are cached by an Association can be
 accessed through the Association’s .Paths() method. The set of
 active carriers on an association can be accessed through the
 Association’s .Carriers() method. Access to transients and paths is
 not necessary in normal operation; these accessors are provided
 primarily for logging and debugging purposes.

 [Carrier]---.Transients()--->[Transient]
 | ^ |
 | | |
 .Association() .Carriers() .Paths()
 | .Initiate() |
 V | V
 [Association]---.Paths()------>[Path]

 Figure 6: Accessors on Carriers and Associations

 Each Carrier has a .Send() method, by which Messages can be sent with
 given properties, and a .Ready() method, which supplies a callback
 for reading Messages from the remote side. .Send() is not available
 on Sinks, and .Ready() is not available on Sources. Carriers also
 provide .OnSent(), .OnAcked(), and .OnExpired() calls for binding
 default send event handlers to the Carrier, and .OnClosed() for
 handling passive close notifications.

Trammell, et al. Expires April 30, 2018 [Page 21]

Internet-Draft Post Sockets October 2017

 +---------[incoming]-----------+
 | [Message] V
 [outgoing] ---> .Send() ---> [Carrier] <---- .Ready() <---- [Receiver]
 [Message] |
 +--- .OnSent()
 +--- .OnAcked()
 +--- .OnExpired()
 +--- .OnClosed()

 Figure 7: Sending and Receiving Messages and Events

 An application may have a global Configuation, as well as more
 specific Configurations to apply to the establishment of a given
 Association or Carrier. These Configurations are optional arguments
 to the Association and Carrier creation calls.

 In order to initiate a connection with a remote endpoint, a user of
 Post Sockets must start from a Remote (see Section 2.4). A Remote
 encapsulates identifying information about a remote endpoint at a
 specific level of resolution. A new Remote can be wrapped around
 some identifying information by via the NewRemote() call. A Remote
 has a .Resolve() method, which can be iteratively revoked to increase
 the level of resolution; a call to Resolve on a given Remote may
 result in one to many Remotes, as shown in Figure 8. Remotes at any
 level of resolution may be passed to Post Sockets calls; each call
 will continue resolution to the point necessary to establish or
 resume a Carrier.

 +----------------------------+
 n | | 1
 NewRemote(identifiers) ---+--->[Remote] --.Resolve()---+

 Figure 8: Recursive resolution of Remotes

 Information about the local endpoint is also necessary to establish
 an Association, whether explicitly or implicitly through the creation
 of a Carrier or Listener. This is passed in the form of a Local (see
 Section 2.5). A Local is created with a NewLocal() call, which takes
 a Configuration (including certificates to present and secret keys
 associated with them) and identifying information (interface(s) and
 port(s) to use).

4. Implementation Considerations

 Here we discuss an incomplete list of API implementation
 considerations that have arisen with experimentation with prototype
 implementations of Post.

Trammell, et al. Expires April 30, 2018 [Page 22]

Internet-Draft Post Sockets October 2017

4.1. Protocol Stack Instance (PSI)

 A PSI encapsulates an arbitrary stack of protocols (e.g., TCP over
 IPv6, SCTP over DTLS over UDP over IPv4). PSIs provide the bridge
 between the interface (Carrier) plus the current state (Transients)
 and the implementation of a given set of transport services
 [I-D.ietf-taps-transports].

 A given implementation makes one or more possible protocol stacks
 available to its applications. Selection and configuration among
 multiple PSIs is based on system-level or application policies, as
 well as on network conditions in the provisioning domain in which a
 connection is made.

 +=========+ +=========+ +==========+ +==========+
 | Carrier | | Carrier | | Carrier | | Carrier |
 +=========+ +=========+ +==========+ +==========+
 | | | |
 +=========+ +=========+ +==========+ +==========+
 |Transient| |Transient| |Transient | |Transient |
 +=========+ +=========+ +==========+ +==========+
 | \ / / \
 +=========+ +=========+ +=========+ +=========+
 | PSI | | PSI | | PSI | | PSI |
 +===+-----++ +===+-----++ +===+-----++ ++-----+===+
 |TLS | |SCTP | |TLS | | TLS|
 |TCP | |DTLS | |TCP | | TCP|
 |IPv6 | |UDP | |IPv6 | | IPv4|
 |802.3 | |IPv6 | |802.11| |802.11|
 +------+ |802.3 | +------+ +------+
 +------+
 (a) Transient (b) Carrier multiplexing (c) Multiple candidates
 bound to PSI over a multi-streaming racing during session
 transport protocol establishment

 Figure 9: Example Protocol Stack Instances

 For example, Figure 9(a) shows a TLS over TCP stack, usable on most
 network connections. Protocols are layered to ensure that the PSI
 provides all the transport services required by the application. A
 single PSI may be bound to multiple Carriers, as shown in
 Figure 9(b): a multi-streaming transport protocol like QUIC or SCTP
 can support one carrier per stream. Where multi-streaming transport
 is not available, these carriers could be serviced by different PSIs
 on different flows. On the other hand, multiple PSIs are bound to a
 single transient during establishment, as shown in Figure 9(c).
 Here, the losing PSI in a happy-eyeballs race will be terminated, and
 the carrier will continue using the winning PSI.

Trammell, et al. Expires April 30, 2018 [Page 23]

Internet-Draft Post Sockets October 2017

4.2. Message Framing, Parsing, and Serialization

 While some transports expose a byte stream abstraction, most higher
 level protocols impose some structure onto that byte stream. That
 is, the higher level protocol operates in terms of messages, protocol
 data units (PDUs), rather than using unstructured sequences of bytes,
 with each message being processed in turn. Protocols are specified
 in terms of state machines acting on semantic messages, with parsing
 the byte stream into messages being a necessary annoyance, rather
 than a semantic concern. Accordingly, Post Sockets exposes a
 message-based API to applications as the primary abstraction.
 Protocols that deal only in byte streams, such as TCP, represent
 their data in each direction as a single, long message. When framing
 protocols are placed on top of byte streams, the messages used in the
 API represent the framed messages within the stream.

 There are other benefits of providing a message-oriented API beyond
 framing PDUs that Post Sockets should provide when supported by the
 underlying transport. These include:

 o the ability to associate deadlines with messages, for transports
 that care about timing;

 o the ability to provide control of reliability, choosing what
 messages to retransmit in the event of packet loss, and how best
 to make use of the data that arrived;

 o the ability to manage dependencies between messages, when some
 messages may not be delivered due to either packet loss or missing
 a deadline, in particular the ability to avoid (re-)sending data
 that relies on a previous transmission that was never received.

 All require explicit message boundaries, and application-level
 framing of messages, to be effective. Once a message is passed to
 Post Sockets, it can not be cancelled or paused, but prioritization
 as well as lifetime and retransmission management will provide the
 protocol stack with all needed information to send the messages as
 quickly as possible without blocking transmission unnecessarily.
 Post Sockets provides this by handling message, with known identity
 (sequence numbers, in the simple case), lifetimes, niceness, and
 antecedents.

 Transport protocols such as SCTP provide a message-oriented API that
 has similar features to those we describe. Other transports, such as
 TCP, do not. To support a message oriented API, while still being
 compatible with stream-based transport protocols, Post Sockets must
 provide APIs for parsing and serialising messages that understand the
 protocol data. That is, we push message parsing and serialisation

Trammell, et al. Expires April 30, 2018 [Page 24]

Internet-Draft Post Sockets October 2017

 down into the Post Sockets stack, allowing applications to send and
 receive strongly typed data objects (e.g., a receive call on an HTTP
 Message Carrier should return an object representing the HTTP
 response, with pre-parsed status code, headers, and any message body,
 rather than returning a byte array that the application has to parse
 itself). This is backwards compatible with existing protocols and
 APIs, since the wire format of messages does not change, but gives a
 Post Sockets stack additional information to allow it to make better
 use of modern transport services.

 The Post Sockets approach is therefore to raise the semantic level of
 the transport API: applications should send and receive messages in
 the form of meaningful, strongly typed, protocol data. Parsing and
 serialising such messages should be a re-usable function of the
 protocol stack instance not the application. This is well-suited to
 implementation in modern systems languages, such as Swift, Go, Rust,
 or C++, but can also be implemented with some loss of type safety in
 C.

4.3. Message Size Limitations

 Ideally, Messages can be of infinite size. However, protocol stacks
 and protocol stack implementations may impose their own limits on
 message sizing; For example, SCTP [RFC4960] and TLS
 [I-D.ietf-tls-tls13] impose record size limitations of 64kB and 16kB,
 respectively. Message sizes may also be limited by the available
 buffer at the receiver, since a Message must be fully assembled by
 the transport layer before it can be passed on to the application
 layer. Since not every transport protocol stack implements the
 signaling necessary to negotiate or expose message size limitations,
 these may need to be defined out of band, and are probably best
 exposed through the Configuration.

 A truly infinite message service - e.g. large file transfer where
 both endpoints have committed persistent storage to the message - is
 probably best realized as a layer above Post Sockets, and may be
 added as a new type of Message Carrier to a future revision of this
 document.

4.4. Back-pressure

 Regardless of how asynchronous reception is implemented, it is
 important for an application to be able to apply receiver back-
 pressure, to allow the protocol stack to perform receiver flow
 control. Depending on how asynchronous I/O works in the platform,
 this could be implemented by having a maximum number of concurrent
 receive callbacks, or by bounding the maximum number of outstanding,
 unread bytes at any given time, for example.

Trammell, et al. Expires April 30, 2018 [Page 25]

Internet-Draft Post Sockets October 2017

4.5. Associations, Transients, Racing, and Rendezvous

 As the network has evolved, even the simple act of establishing a
 connection has become increasingly complex. Clients now regularly
 race multiple connections, for example over IPv4 and IPv6, to
 determine which protocol to use. The choice of outgoing interface
 has also become more important, with differential reachability and
 performance from multiple interfaces. Name resolution can also give
 different outcomes depending on the interface the query was issued
 from. Finally, but often most significantly, NAT traversal, relay
 discovery, and path state maintenance messages are an essential part
 of connection establishment, especially for peer-to-peer
 applications.

 Post Sockets accordingly breaks communication establishment down into
 multiple phases:

 o Gathering Locals

 The set of possible Locals is gathered. In the simple case, this
 merely enumerates the local interfaces and protocols, and
 allocates ephemeral source ports for transients. For example, a
 system that has WiFi and Ethernet and supports IPv4 and IPv6 might
 gather four candidate locals (IPv4 on Ethernet, IPv6 on Ethernet,
 IPv4 on WiFi, and IPv6 on WiFi) that can form the source for a
 transient.

 If NAT traversal is required, the process of gathering locals
 becomes broadly equivalent to the ICE candidate gathering phase
 [RFC5245]. The endpoint determines its server reflexive locals
 (i.e., the translated address of a local, on the other side of a
 NAT) and relayed locals (e.g., via a TURN server or other relay),
 for each interface and network protocol. These are added to the
 set of candidate locals for this association.

 Gathering locals is primarily an endpoint local operation,
 although it might involve exchanges with a STUN server to derive
 server reflexive locals, or with a TURN server or other relay to
 derive relayed locals. It does not involve communication with the
 remote.

 o Resolving the Remote

 The remote is typically a name that needs to be resolved into a
 set of possible addresses that can be used for communication.
 Resolving the remote is the process of recursively performing such
 name lookups, until fully resolved, to return the set of
 candidates for the remote of this association.

Trammell, et al. Expires April 30, 2018 [Page 26]

Internet-Draft Post Sockets October 2017

 How this is done will depend on the type of the Remote, and can
 also be specific to each local. A common case is when the Remote
 is a DNS name, in which case it is resolved to give a set of IPv4
 and IPv6 addresses representing that name. Some types of remote
 might require more complex resolution. Resolving the remote for a
 peer-to-peer connection might involve communication with a
 rendezvous server, which in turn contacts the peer to gain consent
 to communicate and retrieve its set of candidate locals, which are
 returned and form the candidate remote addresses for contacting
 that peer.

 Resolving the remote is _not_ a local operation. It will involve
 a directory service, and can require communication with the remote
 to rendezvous and exchange peer addresses. This can expose some
 or all of the candidate locals to the remote.

 o Establishing Transients

 The set of candidate locals and the set of candidate remotes are
 paired, to derive a priority ordered set of Candidate Paths that
 can potentially be used to establish a connection.

 Then, communication is attempted over each candidate path, in
 priority order. If there are multiple candidates with the same
 priority, then transient establishment proceeds simultaneously and
 uses the transient that wins the race to be established.
 Otherwise, transients establishment is sequential, paced at a rate
 that should not congest the network. Depending on the chosen
 transport, this phase might involve racing TCP connections to a
 server over IPv4 and IPv6 [RFC6555], or it could involve a STUN
 exchange to establish peer-to-peer UDP connectivity [RFC5245], or
 some other means.

 o Confirming and Maintaining Transients

 Once connectivity has been established, unused resources can be
 released and the chosen path can be confirmed. This is primarily
 required when establishing peer-to-peer connectivity, where
 connections supporting relayed locals that were not required can
 be closed, and where an associated signalling operation might be
 needed to inform middleboxes and proxies of the chosen path.
 Keep-alive messages may also be sent, as appropriate, to ensure
 NAT and firewall state is maintained, so the transient remains
 operational.

 By encapsulating these four phases of communication establishment
 into the PSI, Post Sockets aims to simplify application development.
 It can provide reusable implementations of connection racing for TCP,

Trammell, et al. Expires April 30, 2018 [Page 27]

Internet-Draft Post Sockets October 2017

 to enable happy eyeballs, that will be automatically used by all TCP
 clients, for example. With appropriate callbacks to drive the
 rendezvous signalling as part of resolving the remote, we believe a
 generic ICE implementation ought also to be possible. This procedure
 can even be repeated fully or partially during a connection to enable
 seamless hand-over and mobility within the network stack.

5. Acknowledgments

 Many thanks to Laurent Chuat and Jason Lee at the Network Security
 Group at ETH Zurich for contributions to the initial design of Post
 Sockets. Thanks to Joe Hildebrand, Martin Thomson, and Michael Welzl
 for their feedback, as well as the attendees of the Post Sockets
 workshop in February 2017 in Zurich for the discussions, which have
 improved the design described herein.

 This work is partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
 for Education, Research, and Innovation under contract no. 15.0268.
 This support does not imply endorsement.

6. References

6.1. Normative References

 [I-D.ietf-taps-transports]
 Fairhurst, G., Trammell, B., and M. Kuehlewind, "Services
 provided by IETF transport protocols and congestion
 control mechanisms", draft-ietf-taps-transports-14 (work
 in progress), December 2016.

6.2. Informative References

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-07 (work
 in progress), October 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),
 July 2017.

 [I-D.iyengar-minion-protocol]
 Jana, J., Cheshire, S., and J. Graessley, "Minion - Wire
 Protocol", draft-iyengar-minion-protocol-02 (work in
 progress), October 2013.

Trammell, et al. Expires April 30, 2018 [Page 28]

Internet-Draft Post Sockets October 2017

 [I-D.kuehlewind-taps-crypto-sep]
 Kuehlewind, M., Pauly, T., and C. Wood, "Separating Crypto
 Negotiation and Communication", draft-kuehlewind-taps-
 crypto-sep-00 (work in progress), July 2017.

 [I-D.pauly-taps-transport-security]
 Pauly, T. and C. Wood, "A Survey of Transport Security
 Protocols", draft-pauly-taps-transport-security-00 (work
 in progress), July 2017.

 [I-D.trammell-plus-abstract-mech]
 Trammell, B., "Abstract Mechanisms for a Cooperative Path
 Layer under Endpoint Control", draft-trammell-plus-
 abstract-mech-00 (work in progress), September 2016.

 [I-D.trammell-plus-statefulness]
 Kuehlewind, M., Trammell, B., and J. Hildebrand,
 "Transport-Independent Path Layer State Management",
 draft-trammell-plus-statefulness-03 (work in progress),
 March 2017.

 [MinimaLT]
 Petullo, W., Zhang, X., Solworth, J., Bernstein, D., and
 T. Lange, "MinimaLT, Minimal-latency Networking Through
 Better Security", May 2013.

 [NEAT] Grinnemo, K-J., Tom Jones, ., Gorry Fairhurst, ., David
 Ros, ., Anna Brunstrom, ., and . Per Hurtig, "Towards a
 Flexible Internet Transport Layer Architecture", June
 2016.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <https://www.rfc-editor.org/info/rfc5245>.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April
 2012, <https://www.rfc-editor.org/info/rfc6555>.

Trammell, et al. Expires April 30, 2018 [Page 29]

Internet-Draft Post Sockets October 2017

 [RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <https://www.rfc-editor.org/info/rfc6698>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <https://www.rfc-editor.org/info/rfc7556>.

Appendix A. Open Issues

 This document is under active development; a list of current open
 issues is available at https://github.com/mami-project/draft-
 trammell-post-sockets/issues

Authors’ Addresses

 Brian Trammell
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 United Kingdom

 Email: csp@csperkins.org

Trammell, et al. Expires April 30, 2018 [Page 30]

Internet-Draft Post Sockets October 2017

 Tommy Pauly
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Mirja Kuehlewind
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Chris Wood
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Trammell, et al. Expires April 30, 2018 [Page 31]

