TAPS Wor ki ng G oup B. Trammel |
I nternet-Draft ETH Zuri ch
I ntended status: |nformational C. Perkins
Expires: April 30, 2018 Uni versity of d asgow
T. Pauly

Appl e Inc.

M Kuehl ewi nd

ETH Zuri ch

C. Wod

Appl e Inc.
Cct ober 27, 2017

Post Sockets, An Abstract Programming Interface for the Transport Layer
draft-tranmel | -t aps-post-socket s-03

Abst ract

Thi s docunent describes Post Sockets, an asynchronous abstract
programm ng interface for the atom c transm ssion of nmessages in an
i nherently multipath environnent. Post replaces connections with

| ong-1ived associ ati ons between endpoints, with the possibility to
cache cryptographic state in order to reduce anortized connection

| atency. We present this abstract interface as an illustration of
what is possible with present devel opnents in transport protocols
when freed fromthe strictures of the current sockets API

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on April 30, 2018.

Tramel |, et al. Expires April 30, 2018 [Page 1]

Internet-Draft Post Sockets

Copyright Notice

Cct ober 2017

Copyright (c) 2017 |IETF Trust and the persons identified as the

docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal

Provisions Relating to | ETF Docunents

(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Sinplified BSD License.
Tabl e of Contents

1. Introduction .

2. Abstractions and Ter m noI ogy
Message Carrier

Message .

Associ ation .

Renot e

Local .

Confi guratl on .

Transi ent

Pat h

3. Abst ract Pr ogramn ng I nt erf ace .
Exanpl e Connection Patterns .
Client-Server

NN
PNoRrwWNE

w
Wwk
|
|

1: 2: Client-Server W|th Happy Eyebal I s and 0 RTT

est abl i shnent

3
4. Milticast Receiver .
5. Associ ati on Boot strappl ng .
APl Dynani cs . .
nmpl enent ati on Consi der atl ons .
Protocol Stack Instance (PSI)

w

Message Size Limtations
Back- pressure .

gRONEPETNLOOLWW

B

5. Acknow edgnents .
6. Ref er ences
6.1. Normative Ref erences
6.2. Informative References
Appendi x A, Open | ssues
Aut hors’ Addr esses

Tramel |, et al. Expires April 30, 2018

Peer to Peer with Netvvork Address Transl atlon

Message Fram ng, Parsing, and Seriali zatl on .

Associ ations, Transients, Racing, and Rendezvous

Internet-Draft Post Sockets Cct ober 2017

1.

I nt roducti on

The BSD Uni x Sockets API’'s SOCK STREAM abstracti on, by bringing
network sockets into the UNI X progranm ng nodel, allow ng anyone who
knew how to wite prograns that dealt with sequential-access files to
also wite network applications, was a revolution in sinmplicity. It
woul d not be an overstatenent to say that this sinple APl is the
reason the Internet won the protocol wars of the 1980s. SOCK STREAM
is tied to the Transm ssion Control Protocol (TCP), specified in 1981
[RFCO793]. TCP has scaled remarkably well over the past three and a
hal f decades, but its total ubiquity has hi dden an unconfortabl e
fact: the network is not really a file, and stream abstractions are
too sinplistic for many nodern application progranni ng nodels.

In the nmeantine, the nature of Internet access, and the variety of
Internet transport protocols, is evolving. The challenges that new
protocol s and access paradi gns present to the sockets APl and to
programi ng nodel s based on theminspire the design elenents of a new
appr oach.

Many end-user devices are connected to the Internet via multiple
interfaces, which suggests it is tine to pronote the paths by which
two endpoints are connected to each other to a first-order object.
Wiile inplicit nultipath communication is available for these

mul ti honed nodes in the present Internet architecture with the

Mul tipath TCP extension (MPTCP) [RFC6824], MPTCP was specifically
designed to hide nultipath comunication fromthe application for

pur poses of conpatibility. Since many nulti honed nodes are connected
to the Internet through access paths with widely different properties
with respect to bandw dth, | atency and cost, adding explicit path
control to MPTCP's APl would be useful in many situations

Anot her trend straining the traditional layering of the transport
stack associated with the SOCK STREAM i nterface is the w despread

i nterest in ubiquitous deploynment of encryption to guarantee
confidentiality, authenticity, and integrity, in the face of
pervasi ve surveillance [RFC7258]. Layering the nost wi dely depl oyed
encryption technol ogy, Transport Layer Security (TLS), strictly atop
TCP (i.e., via a TLS library such as OpenSSL that uses the sockets
APl) requires the encryption-layer handshake to happen after the
transport-1layer handshake, which increases connection setup |atency
on the order of one or two round-trip tines, an unacceptabl e del ay
for many applications. |Integrating cryptographic state setup and
mai nt enance into the path abstraction naturally conplenents efforts
in new protocols (e.g. QUCI[I-D.ietf-quic-transport]) to nmtigate
this strict |ayering.

Tramel |, et al. Expires April 30, 2018 [Page 3]

Internet-Draft Post Sockets Cct ober 2017

To neet these chall enges, we present the Post-Sockets Application
Programming Interface (APlI), described in detail in this work. Post
is designed to be | anguage, transport protocol, and architecture

i ndependent, allowi ng applications to be witten to a comobn abstract
interface, easily ported anong different platforms, and used even in
envi ronnments where transport protocol selection nmay be done
dynanically, as proposed in the |ETF s Transport Services worKking

gr oup.

Post replaces the traditional SOCK STREAM abstraction with a Message
abstraction, which can be seen as a generalization of the Stream
Control Transm ssion Protocol’s [RFC4960] SOCK SEQPACKET servi ce.
Messages are sent and received on Carriers, which logically group
Messages for transm ssion and reception. For backward conpatibility,
bidirectional byte streamprotocols are represented as a pair of
Messages, one in each direction, that can only be narked conpl ete
when the sendi ng peer has finished transnitting data.

Post replaces the notions of a socket address and connected socket
with an Association with a renote endpoint via set of Paths.

I mpl enentation and wire format for transport protocol (s) inplenmenting
the Post APl are explicitly out of scope for this work; these
abstractions need not nap directly to inplenentation-|evel concepts,
and i ndeed with various anounts of shinming and gl ue could be

i mpl emrented with varying success atop any sufficiently flexible
transport protocol

The key features of Post as conpared with the existing sockets AP
are:

0 Explicit Message orientation, with framng and atomicity
guar antees for Message transm ssion

0 Asynchronous reception, allowing all receiver-side interactions to
be event-driven

0 Explicit support for nultistreanm ng and nultipath transport
protocol s and network architectures.

0 Long-lived Associations, whose lifetines nmay not be bound to
underlying transport connections. This allows associations to
cache state and cryptographic key nmaterial to enable fast
resunption of communi cation, and for the inplenentation of the AP
to explicitly take care of connection establishnment mechani cs such
as connection racing [RFC6555] and peer-to-peer rendezvous
[RFC5245] .

Tramel |, et al. Expires April 30, 2018 [Page 4]

Internet-Draft Post Sockets Cct ober 2017

o Transport protocol stack independence, allow ng applications to be
witten in ternms of the semantics best for the application’ s own
design, separate fromthe protocol (s) used on the wire to achieve
them This enables applications witten to a single APl to nake
use of transport protocols in terns of the features they provide,
as in [I-D.ietf-taps-transports].

This work is the synthesis of many years of Internet transport
protocol research and developnment. It is inspired by concepts from
the Stream Control Transmi ssion Protocol (SCTP) [RFC4960], TCP M nion
[I-D.iyengar-mnion-protocol], and MninalLT [M ni naLT], anobng ot her
transport protocol nodernization efforts. W present Post as an
illustration of what is possible with present devel opnents in
transport protocols when freed fromthe strictures of the current
sockets API. Vhile much of the work for building parts of the
protocol s needed to inplenent Post are already ongoing in other |ETF
wor ki ng groups (e.g. MPTCP, QUIC, TLS), we argue that an abstract
programm ng interface unifying access all these efforts is necessary
to fully exploit their potential

2. Abstractions and Term nol ogy

Tramel |, et al. Expires April 30, 2018 [Page 5]

Internet-Draft Post Sockets Cct ober 2017

+ +
| Message |
+ +
" I |
send() | |ready() |initiate() |1isten()
\% | \% \%

+ + [} gty o}

| _ | accept()| |

| Carrier | <-------- | Listener |

I I I I

+ + ‘=== =4
|1 | nl | +=========
| | | 1 [+---]1 Loca
| + + + + | +=====—====
|| , o o |---+
| | Configuration |--]| Associ ation [+=========
|| | [------- | Renote |
| + + + + +=========
[[1] durable end-to-end
+o---- - + | | state via many paths,

| | | policies, and prefs
nl | n|
[ittty o [gty o
epheneral | | |
transport & | Transient |[------- | Pat h | properties of
crypto state | | n 1] | address pair
[bty o} [b

Figure 1: Abstractions and rel ationships in Post Sockets

Post is based on a small set of abstractions, centered around a
Message Carrier as the entry point for an application to the
networking APlI. The rel ationships anbng them are shown in
Figure Figure 1 and detailed in this section

2.1. Message Carrier

A Message Carrier (or sinply Carrier) is a transport protocol stack-
i ndependent interface for sending and receiving nessages between an
application and a renpote endpoint; it is roughly anal ogous to a
socket in the present sockets AP

Sendi ng a Message over a Carrier is driven by the application, while
receipt is driven by the arrival of the |last packet that allows the
Message to be assenbl ed, decrypted, and passed to the application.
Recei pt is therefore asynchronous; given the different nodels for
asynchronous |/ 0O and concurrency supported by different platforms, it

Tramel |, et al. Expires April 30, 2018 [Page 6]

Internet-Draft Post Sockets Cct ober 2017

may be inplenented in any nunber of ways. The abstract APl provides
only for a way for the application to register howit wants to handl e
i ncom ng nmessages.

Al'l the Messages sent to a Carrier will be received on the
corresponding Carrier at the renote endpoint, though not necessarily
reliably or in order, depending on Message properties and the
underlying transport protocol stack

A Carrier that is backed by current transport protocol stack state
(such as a TCP connection; see Section 2.7) is said to be "active"
messages can be sent and received over it. A Carrier can also be
"dormant": there is long-termstate associated with it (via the
underlying Association; see Section 2.3), and it may be able to
reactivated, but nessages cannot be sent and received i mediately.
Carriers beconme dormant when the underlying transport protocol stack
determ nes that an underlying connection has been lost and there is
insufficient state in the Association to re-establish it (e.g., in
the case of a server-side Carrier where the client’s address has
changed unexpectedly). Passive close can be handl ed by the
application via an event on the carrier. Attenpting to use a carrier
after passive close results in an error.

I f supported by the underlying transport protocol stack, a Carrier
may be forked: creating a new Carrier associated with a new Carrier
at the sane renote endpoint. The semantics of the usage of multiple
Carriers based on the same Association are application-specific.

When a Carrier is forked, its corresponding Carrier at the renote
endpoi nt receives a fork request, which it nust accept in order to
fully establish the new carrier. Miltiple Carriers between endpoints
are inplenented differently by different transport protocol stacks,
either using multiple separate transport-Ilayer connections, or using
multiple streams of nultistream ng transport protocols.

To exchange nessages with a given renote endpoint, an application nmay
initiate a Carrier given its renpote (see Section 2.4 and | ocal (see
Section 2.5) identities; this is an equivalent to an active open
There are four special cases of Carriers, as well, supporting
different initiation and interaction patterns, defined in the
subsecti ons bel ow.

0 Listener: A Listener is a special case of Message Carrier which
only responds to requests to create a new Carrier froma renote
endpoi nt, anal ogous to a server or |istening socket in the present
sockets API. Instead of being bound to a specific renote
endpoint, it is bound only to a local identity; however, its
interface for accepting fork requests is identical to that for
fully fledged Carriers.

Tramel |, et al. Expires April 30, 2018 [Page 7]

Internet-Draft Post Sockets Cct ober 2017

0 Source: A Source is a special case of Message Carrier over which
messages can only be sent, intended for unidirectiona
applications such as nulticast transmtters. Sources cannot be
forked, and need not accept forks.

o Sink: A Sink is a special case of Message Carrier over which
messages can only be received, intended for unidirectiona
applications such as multicast receivers. Sinks cannot be forked,
and need not accept forks.

0 Responder: A Responder is a special case of Message Carrier which
may receive nessages from nmany renote sources, for cases in which
an application will only ever send Messages in reply back to the
source from which a Message was received. This is a comon
i npl ementation pattern for servers in client-server applications.
A Responder’s receiver gets a Message, as well as a Source to send
replies to. Responders cannot be forked, and need not accept
forks.

2.2. Message

A Message is the unit of conmunication between applications.
Messages can represent relatively small structures, such as requests
in a request/response protocol such as HITP; relatively |arge
structures, such as files of arbitrary size in a filesystenm and
structures of indetermnate | ength, such as a streamof bytes in a
protocol |ike TCP

In the general case, there is no mappi ng between a Message and
packets sent by the underlying protocol stack on the wire: the
transport protocol nmay freely segnment messages and/or conbine
messages i nto packets. However, a nessage may be marked as

i medi ate, which will cause it to be sent in a single packet when
possi bl e.

Content may be sent and received either as Conplete or Partia
Messages. Dealing with Conpl ete Messages should be preferred for
simplicity whenever possible based on the underlying protocol. It is
al ways possible to send Conpl ete Messages, but only protocols that
have a fixed maxi num nmessage length nay allow clients to receive
Messages using an APl that guarantees Conplete Messages. Sendi ng and
receiving Partial Messages (that is, a Message whose content spans
multiple calls or callbacks) is always possible.

To send a Message, either Conplete or Partial, the Message content is
passed into the Carrier, and client provides a set of callbacks to
know when t he Message was delivered or acknow edged. The client of
the APl may use the call backs to pace the sending of Messages.

Tramel |, et al. Expires April 30, 2018 [Page 8]

Internet-Draft Post Sockets Cct ober 2017

To receive a Message, the client of the APl schedules a conmpletion to
be called when a Conplete or Partial Message is available. If the
client is willing to accept Partial Messages, it can specify the

m ni mum i nconpl ete Message length it is willing to receive at once,
and t he maxi nrum nunber of bytes it is willing to receive at once. |If
the client wants Conpl ete Messages, there are no values to tune. The
schedul i ng of the receive conpletion indicates to the Carrier that
there is a desire to receive bytes, effectively creating a "pull

nmodel " in which backpressure may be applied if the client is not

recei ving Messages or Partial Messages quickly enough to natch the
peer’'s sending rate. The Carrier nmay have sone mnimal buffer of

i nconmi ng Messages ready for the client to read to reduce |atency.

When receiving a Conpl ete Message, the entire content of the Message
must be delivered at once, and the Message is not delivered at all if
the full Message is not received. This inplies that both the sending
and receiving endpoint, whether in the application or the carrier,
must guarantee storage for the full size of a Message.

Partial Messages may be sent or received in several stages, with a
handl e representing the total Message being associated with each
portion of the content. Each call to send or receive also indicates
whet her or not the Message is now conplete. This approach is
necessary whenever the size of the Message does not have a known
bound, or the size is too large to process and hold in menory.
Protocol s that only present a concept of byte streans represent their
data as single Messages with unknown bounds. 1In the case of TCP, the
client will receive a single Message in pieces using the Parti al
Message API, and that Message will only be nmarked as conpl ete when
the peer has sent a FIN

Messages are sent over and received from Message Carriers (see
Section 2.1).

On sendi ng, Messages have properties that allow the application to
specify its requirements with respect to reliability, ordering,
priority, idenpotence, and inmedi acy; these are described in detail
bel ow. Messages may al so have arbitrary properties which provide
additional information to the underlying transport protocol stack on
how t hey shoul d be handled, in a protocol-specific way. These stacks
may al so deliver or set properties on received nessages, but in the
general case a received nessages contains only a sequence of ordered
bytes. Message properties include:

o Lifetine and Partial Reliability: A Message may have a "lifetine"
- awall clock duration before which the Message nust be avail abl e
to the application layer at the renote end. If a lifetime cannot

be net, the Message is discarded as soon as possible. Messages

Tramel |, et al. Expires April 30, 2018 [Page 9]

Internet-Draft Post Sockets Cct ober 2017

without lifetinmes are sent reliably if supported by the transport
protocol stack. Lifetines are also used to prioritize Message
delivery.

There is no guarantee that a Message will not be delivered after
the end of its lifetine; for exanple, a Message delivered over a
strictly reliable transport will be delivered regardless of its
lifetime. Depending on the transport protocol stack used to
transmt the nmessage, these lifetinmes may al so be signalled to
path el enments by the underlying transport, so that path el enents
that realize a lifetine cannot be met can discard franes
containing the Messages instead of forwardi ng them

o Priority: Messages have a "niceness" - a priority among ot her
messages sent over the sane Carrier in an unbounded hierarchy nost
naturally represented as a non-negative integer. By default,
Messages are in niceness class 0, or highest priority. N ceness
class 1 Messages will yield to niceness class 0 Messages sent over
the sane Carrier, class 2 to class 1, and so on. Niceness nmay be
translated to a priority signal for exposure to path elements
(e.g. DSCP code point) to allow prioritization along the path as
well as at the sender and receiver. This inversion of norma
schenes for expressing priority has a conveni ent property:
priority increases as both niceness and lifetinme decrease. A
Message nmay have both a niceness and a lifetinme - Messages with
hi gher niceness classes will yield to | ower classes if resource
constraints nmean only one can neet the lifetine.

o Dependence: A Message nay have "antecedents" - other Messages on
which it depends, which nmust be delivered before it (the
"successor") is delivered. The sending transport uses deadlines,
ni ceness, and antecedents, along with information about the
properties of the Paths available, to determ ne when to send which
Message down which Pat h.

0 |denpotence: A sending application may mark a Message as
"idenpotent” to signal to the underlying transport protocol stack
that its application semantics make it safe to send in situations
that may cause it to be received nore than once (i.e., for O-RIT
session resunption as in TCP Fast Qpen, TLS 1.3, and QUI C

o |Inmediacy: A sending application may mark a Message as "i nmedi ate"
to signal to the underlying transport protocol stack that its
application semantics require it to be placed in a single packet,
on its own, instead of waiting to be conmbined with other nmessages
or parts thereof (i.e., for nmedia transports and interactive
sessions with small nessages).

Tramel |, et al. Expires April 30, 2018 [Page 10]

Internet-Draft Post Sockets Cct ober 2017

Senders may al so be asynchronously notified of three events on
Messages they have sent: that the Message has been transmitted, that
the Message has been acknow edged by the receiver, or that the
Message has expired before transm ssion/acknow edgenent. Not al
transport protocol stacks will support all of these events.

2.3. Association

An Association contains the long-termstate necessary to support
conmmuni cati ons between a Local (see Section 2.5) and a Renpte (see
Section 2.4) endpoint, such as trust nodel infornmation, including

pi nned public keys or anchor certificates, cryptographic session
resunption paraneters, or rendezvous information. It uses
informati on fromthe Configuration (see Section 2.6) to constrain the
sel ection of transport protocols and local interfaces to create
Transients (see Section 2.7) to carry Messages; and information about
the paths through the network avail abl e avail abl e bet ween them (see
Section 2.8).

Al Carriers are bound to an Association. New Carriers will reuse an
Association if they can be carried fromthe same Local to the same
Renote over the sane Paths; this re-use of an Association may inplies
the creation of a new Transient.

Associ ations may exist and be created without a Carrier. This may be
done if peer cryptographic state such as a pre-shared key is

est abli shed out-of-band. Thus, Associations may be created w thout
the need to send application data to a peer, that is, without a
Carrier. Associations are nutable. Association state may expire
over time, after which it is renmoved fromthe Association, and
Transi ents nmay export cryptographic state to store in an Association
as needed. Miyreover, this state may be exported directly into the
Associ ation or nodified before insertion. This may be needed to

di versify epheneral Transient keying material fromthe |longer-term
Associ ation keying material .

A primary use of Association state is to allow new Associ ati ons and
their derived Carriers to be quickly created wi thout performng in-
band cryptographi c handshakes. See [I-D. kuehl ewi nd-taps-crypto-sep]
for nore details about this separation

2. 4. Renot e

A Renmpte represents information required to establish and maintain a
connection with the far end of an Association: name(s), address(es),
and transport protocol paraneters that can be used to establish a
Transient; transport protocols to use; trust nodel information,
inherited fromthe rel evant Association, used to identify the renote

Tramel |, et al. Expires April 30, 2018 [Page 11]

Internet-Draft Post Sockets Cct ober 2017

on connection establishment; and so on. Each Association is
associated with a single Renote, either explicitly by the application
(when created by the initiation of a Carrier) or a Listener (when
created by forking a Carrier on passive open).

A Renmote may be resolved, which results in zero or nore Renbtes with
more specific information. For exanple, an application my want to
establish a connection to a website identified by a URL
https://ww. exanpl e.com This URL would be wrapped in a Renote and
passed to a call to initiate a Carrier. The first pass resolution
m ght parse the URL, deconposing it into a nane, a transport port,
and a transport protocol to try connecting with. A second pass
resol ution would then | ook up network-|ayer addresses associated with
that nanme through DNS, and store any certificates available from
DANE. Once a Rennte has been resolved to the point that a transport
protocol stack can use it to create a Transient, it is considered
fully resol ved

2.5. Loca

A Local represents all the information about the |ocal endpoint
necessary to establish an Association or a Listener. It encapsul ates
the Provisioning Donain (PvD) of a single interface in the nultiple
provi sioning domain architecture [RFC7556], and adds infornmation
about the service endpoint (transport protocol port), and, per

[1-D. paul y-taps-transport-security], cryptographic identities
(certificates and associated private keys) bound to this endpoint.

2.6. Configuration

A Configuration encapsul ates an application’s preferences around Path
sel ection and protocol options.

Each Associ ation has exactly one Configuration, and all Carriers
bel onging to that Association share the same Configuration

The application cannot nodify the Configuration for a Carrier or
Associ ation once it is set. |If a new set of options needs to be
used, then the application needs a new Carrier or Association
instance. This is necessary to ensure that a single Carrier can
consistently track the Paths and protocol options it uses, since it
is usually not possible to nodify these properties w thout breaking
connectivity.

To influence Path sel ection, the application can configure a set of
requirenents, preferences, and restrictions concerning which Paths
may be sel ected by the Association to use for creating Transients
between a Local and a Renpte. For exanple, a Configuration can

Tramel |, et al. Expires April 30, 2018 [Page 12]

Internet-Draft Post Sockets Cct ober 2017

specify that the application prefers W-Fi access over LTE when
roami ng on a foreign LTE network, due to nonetary cost to the user.

The Associ ation uses the Configuration's Path preferences as a key
part of determning the Paths to use for its Transients. The
Configuration is provided as i nput when exam ning the conplete |ist
of available Paths on the system (to linit the list, or order the
Pat hs by preference). The systemis policy will further restrict and
modify the Path that is ultimtely selected, using other aspects of
the Configuration (protocol options and originating application) to
sel ect the nost appropriate Path.

To influence protocol selection and options, the Configuration
contains one or nore allowed Protocol Stack Configurations. Each of
these is conprised of application- and transport-|ayer protocols that
may be used together to conmmunicate to the Renpte, along with any
protocol -specific options. For exanple, a Configuration could
specify two alternate, but equivalent, protocol stacks: one using
HTTP/ 2 over TLS over TCP, and the other using QU C over UDP

Al ternatively, the Configuration could specify two protocol stacks
with the sane protocols, but different protocol options: one using
TLS with TLS 1.3 O-RTT enabled and TCP with TCP Fast- Open enabl ed,
and one using TLS with out O-RTT and TCP wit hout TCP Fast - Open

Prot ocol -specific options within the Configuration include trust
settings and acceptabl e cryptographic algorithnms to be used by
security protocols. These may be configured for specific protocols
to allow different settings for each (such as between TLS over TCP
and TLS for use with QU C), or set as default security settings on
the Configuration to be used by any protocol that needs to eval uate
trust. Trust settings may include certificate anchors and
certificate pinning options.

2.7. Transient

A Transient represents a binding between a Carrier and the instance
of the transport protocol stack that inplenments it. As an

Associ ation contains |long-termstate for communi cati ons between two
endpoi nts, a Transient contains epheneral state for a single
transport protocol over a one or nore Paths at a given point in tine.

A Carrier may be served by nultiple Transients at once, e.g. when

i mpl ementing nultipath communi cati on such that the separate paths are
exposed to the APl by the underlying transport protocol stack. Each
Transi ent serves only one Carrier, although multiple Transients may
share the sane underlying protocol stack; e.g. when nultiplexing
Carriers over streans in a multistream ng protocol

Tramel |, et al. Expires April 30, 2018 [Page 13]

Internet-Draft Post Sockets Cct ober 2017

2

Transients are generally not exposed by the APl to the application
t hough they may be accessible for debuggi ng and | oggi ng purposes.

8.

Pat h

A Path represents information about a single path through the network
used by an Association, in terns of source and destination network
and transport |ayer addresses within an addressing context, and the
provi sioni ng domai n [RFC7556] of the local interface. This

i nformati on may be | earned through a resolution, discovery, or
rendezvous process (e.g. DNS, ICE), by neasurenents taken by the
transport protocol stack, or by sone other path information discovery
mechanism It is used by the transport protocol stack to maintain
and/ or (re-)establish communications for the Association.

The set of available properties is a function of the transport
protocol stacks in use by an association. However, the follow ng
core properties are generally useful for applications and transport
| ayer protocols to choose anong paths for specific Messages:

(0]

Maxi mum Transm ssion Unit (MIU): the maxi mum size of an Message’s
payl oad (subtracting transport, network, and link |ayer overhead)
which will likely fit into a single frame. Derived fromsignals

sent by path el ements, where avail able, and/or path MU di scovery
processes run by the transport |ayer

Lat ency Expectation: expected one-way del ay al ong the Path.
General |y provided by inline neasurenents perfornmed by the
transport |ayer, as opposed to signal ed by path el enents.

Loss Probability Expectation: expected probability of a | oss of
any given single frame along the Path. Generally provided by
inline neasurenents perfornmed by the transport |ayer, as opposed
to signaled by path el enents.

Avai |l abl e Data Rate Expectation: expected nmaxi num data rate al ong
the Path. May be derived from passive neasurenents by the
transport layer, or fromsignals frompath el ements

Reserved Data Rate: Committed, reserved data rate for the given
Associ ation along the Path. Requires a bandw dth reservation
service in the underlying transport protocol stack

Pat h El enent Menbership: ldentifiers for some or all nodes al ong
the path, depending on the capabilities of the underlying network
| ayer protocol to provide this.

Tramel |, et al. Expires April 30, 2018 [Page 14]

Internet-Draft Post Sockets Cct ober 2017

Path properties are generally read-only. MU is a property of the
underlying link-1ayer technology on each link in the path; |atency,

| oss, and rate expectations are dynam c properties of the network
configuration and network traffic conditions; path el ement nenbership
is a function of network topology. In an explicitly nmultipath
architecture, application and transport |ayer requirenents can be net
by having multiple paths with different properties to select from
Transport protocol stacks can al so provide signaling to devices al ong
the path, but this signaling is derived frominformation provided to
the Message abstracti on.

3. Abstract Programing Interface

We now turn to the design of an abstract programmng interface to
provide a sinple interface to Post’s abstractions, constrained by the
fol |l owi ng design principles:

0 Flexibility is paranpbunt. So is sinplicity. Applications nust be
given as many controls and as nuch information as they may need,
but they must be able to ignore controls and information
irrelevant to their operation. This inplies that the "default”
interface nust be no nore conplicated than BSD sockets, and nust
do sonet hing reasonabl e.

0 Reception is an inherently asynchronous activity. Wile the API
is designed to be as platformindependent as possible, one key
insight it is based on is that an Message receiver’s behavior in a
packet -swi tched network is inherently asynchronous, driven by the
recei pt of packets, and that this asynchronicity nust be reflected
in the API. The actual inplenmentation of receive and event
handling will need to be aligned to the method a given platform
provi des for asynchronous 1/0QO

o0 A new APl cannot be bound to a single transport protocol and
expect wi de deploynent. As the APl is transport-independent and
may support runtinme transport selection, it nust inpose the
m ni mum possi bl e set of constraints on its underlying transports,
t hough some APl features may require underlying transport features
to work optimally. It nust be possible to inplenent Post over
vanilla TCP in the present Internet architecture.

The APl we design fromthese principles is centered around a Carrier
whi ch can be created actively via initiate() or passively via a
listen(); the latter creates a Listener fromwhich new Carriers can
be accept()ed. Messages may be created explicitly and passed to this
Carrier, or inmplicitly through a sinplified interface which uses
default nessage properties (reliable transport w thout priority or

Tramel |, et al. Expires April 30, 2018 [Page 15]

Internet-Draft Post Sockets Cct ober 2017

deadl i ne, which guarantees ordered delivery over a single Carrier
when the underlying transport protocol stack supports it).

For each connection between a Local and a Renbte a new Carrier is
created and destroyed when the connection is closed. However, a new
Carrier may use an existing Association if present for the requested
Local -Renpte pair and pernmitted by the PolicyContext that can be
provided at Carrier initiation. Further the systemw de

Pol i cyCont ext can contain nore information that determn ne when to
create or destroy Associations other than at Carrier initiation

E.g. an Association can be created at systemstart, based on the
configured PolicyContext or also by a nmanual action of an single
application, for Local-Renpote pairs that are known to be likely used
soon, and to pre-establish, e.g., cryptographic context as well as
potentially collect current information about path capabilities.
Every tine an actual connection with a specific PSI is established
bet ween the Local and Renote, the Association | earns new Path
information and stores them This information can be used when a new
transient is created, e.g. to decide which PSI to use (to provide the
hi ghest probably for a successful connection attenpt) or which PSIs
to probe for (first). A Transient is created when an application
actually sends a Message over a Carrier. As further explained bel ow
this step can actually create nultiple transients for probing or
assign a new transient to an already active PSI, e.g. if multi-
streaming is provided and supported for these kind of use on both

si des.

3.1. Exanple Connection Patterns
Here, we illustrate the usage of the API for commpn connection
patterns. Note that error handling is ignhored in these illustrations
for ease of reading.

3.1.1. dient-Server

Here's an exanple client-server application. The server echoes
messages. The client sends a nessage and prints what it receives.

The client in Figure 2 connects, sends a nessage, and sets up a
receiver to print nmessages received in response. The carrier is
inactive after the Initiate() call; the Send() call blocks until the
carrier can be activated.

Tramel |, et al. Expires April 30, 2018 [Page 16]

Internet-Draft Post Sockets Cct ober 2017

/] connect to a server given a renote
func sayHello() {

carrier := Initiate(local, renote)

carrier.Send([]byte("Hello!"))

carrier.Ready(func (nmsg | nMessage) {
frm.Println(string([]byte(nsg))
return fal se

})

carrier.d ose()

Figure 2: Exanple client

The server in Figure 3 creates a Listener, which accepts Carriers and
passes themto a server. The server echos the content of each
message it receives.

/1 run a server for a specific carrier, echo all its messages
func runMyServerOn(carrier Carrier) {
carrier.Ready(func (nsg | nMessage) {
carrier. Send(nsg)
})

}

/| accept connections forever, spawn servers for them
func accept Connections() {
listener := Listen(local)
listener. Accept (func(carrier Carrier) bool {
go runMyServerOn(carrier)
return true

b
Fi gure 3: Exanpl e server

The Responder allows the server to be significantly sinplified, as
shown in Figure 4.

func echo(msg I nMessage, reply Sink) {
reply. Send(nsg)

Respond(| ocal , echo)

Fi gure 4: Exanpl e responder

Tramel |, et al. Expires April 30, 2018 [Page 17]

Internet-Draft Post Sockets Cct ober 2017

3.1.2. dient-Server with Happy Eyeballs and O-RTT establishnent

The fundanmental design of a client need not change at all for happy
eyebal | s [RFC6555] (selection of nmultiple potential protocol stacks
t hrough connection racing); this is handl ed by the Post Sockets

i mpl ementation automatically. |If this connection racing is to use
O-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client
must mark the outgoi ng nessage as i denpotent.

/1 connect to a server given a renote and send sone O-RTT data
func sayHel | oQui ckly() {

carrier :=1Initiate(local, renote)

carrier. Sendvsg(Qut Message{Content: []byte("Hello!"), ldenpotent: true}, ni
, hnil, nil)
carrier.Ready(func (nmsg | nMessage) {
frmt.Println(string([]byte(nsg)))
return false
})
carrier.d ose()

}

3.1.3. Peer to Peer with Network Address Transl ation

In the client-server exanples shown above, the Renote given to the
Initiate call refers to the name and port of the server to connect
to. This need not be the case, however; a Renbte may al so refer to
an identity and a rendezvous point for rendezvous as in |ICE

[RFC5245]. Here, each peer does its own Initiate cal

sinul taneously, and the result on each side is a Carrier attached to
an appropriate Associ ation.

3.1.4. Milticast Receiver

A multicast receiver is inplenented using a Sink attached to a Loca
encapsul ating a nulticast address on which to receive nulticast
datagrans. The follow ng exanple prints nmessages received on the
mul ti cast address forever.

func receiveMiul ticast() {
si nk = NewSi nk(1 ocal)
si nk. Ready(func (nsg | nMessage) {
frmt.Println(string([]byte(nmsg)))
return true

})

Trammel |, et al. Expires April 30, 2018 [Page 18]

Internet-Draft Post Sockets Cct ober 2017

3.1.5. Association Bootstrapping

Here, we show how Associ ation state may be initialized without a
carrier. The goal is to create a long-term Associ ati on from which
Carriers may be derived and, if possible, used i mediately. Per
[1-D. paul y-taps-transport-security], a first step is to specify trust
nmodel constraints, such as pinned public keys and anchor
certificates, which are needed to create Renpte connecti ons.

We begin by creating shared security paraneters that will be used
|ater for creating a renote connection.

/] create security paraneters with a set of trusted certificates
func createParaneters(trustedCerts [JCertificate) Parameters {
paraneters := Paraneters()
paraneters = paraneters. Set TrustedCerts(trustedCerts)
return paraneters

}

Using these statically configured paraneters, we now show how to
create an Associ ation between a Local and Rempte using these
paraneters

/] create an Association using shared paraneters
func createAssociation(local Local, renmpte Renote, paraneters Paraneters) Assoc
ation {

associ ation := NewAssoci ation(local, renote, parameters)

return association

W may al so create an Association with a pre-shared key confi gured
out - of - band

/1 create an Association using a pre-shared key
func createAssoci ati onWthPSK(l ocal Local, renpte Renote, paraneters Paraneters,
preSharedKey []byte) Association {
associ ati on : = NewAssoci ation(local, renmote, paraneters)
associ ation = associ ati on. Set Pr eShar edKey(pr eShar edKey)
return associ ation

We now show how to create a Carrier froman existing, pre-configured
Association. This Association may or may not contain shared
cryptographic static between the Local and Renote, dependi ng on how
it was configured.

Tramel |, et al. Expires April 30, 2018 [Page 19]

Internet-Draft Post Sockets Cct ober 2017

/1l open a connection to a server using an existing Association and send sone dat
al
[l which will be sent early if possible.
func sayHel | oWthAssoci ati on(associ ati on Associ ation) {
carrier := association.lnitiate()

carrier. Sendvsg(Qut Message{Content: []byte("Hello!"), Ildenmpotent: true}, ni
, nil, nil)
carrier.Ready(func (nmsg I nMessage) {
frmt.Println(string([]byte(nsg)))
return fal se

1)

carrier.d ose()

3.2. APl Dynamcs

As Carriers provide the central entry point to Post, they are key to
APl dynamics. The lifecycle of a carrier is shown in Figure 5.
Carriers are created by active openers by calling Initiate() given a
Local and a Renpte, and by passive openers by calling Listen() given
a Local; the .Accept() nmethod on the listener Carrier can then be
used to create active carriers. By default, the underlying
Association is automatically created and nanaged by the underlying
APl . This underlying Association can be accessed by the Carrier’s
.Association() nmethod. Alternately, an association can be explicitly
created using NewAssociation(), and a Carrier on the association may
be accessed or initiated by calling the association’s .lnitiate()

net hod.

Once a Carrier has been created (via Initiate(),
Association.lnitiate(), NewSource(), NewSink(), or

Li sten()/Accept()), it may be used to send and recei ve Messages. The
exi stence of a Carrier does not inply the existence of an active
Transi ent or associated transport-|ayer connection; these nay be
created when the carrier is, or may be deferred, depending on the
networ k environnent, configuration, and protocol stacks avail abl e.

Tramel |, et al. Expires April 30, 2018 [Page 20]

Internet-Draft Post Sockets Cct ober 2017

Li sten(l ocal) Initiate(local, renote) NewSour ce(| ocal , renot e)
| | or NewSi nk(1 ocal)
[Carrier] | |
[(listener)] S R T +
Y
.Accept()----------- > [Carrier] -+---------- > . Cose()

| A | close [Carrier]
| | +- event -> [(closed)]

.Association() .Carriers()
| .Initiate()
\ I
[Associ ati on]
N

NewAssoci ati on(l ocal , renote)
Figure 5: Carrier and Association Life Cycle

Access to nore detailed information is possible through accessors on
Carriers and Associ ations, as shown in Figure 6. The set of
currently active Transients can be accessed through the Carrier’s

. Transients() nmethods. The active path(s) used by a Transient can be
accessed through the Transient’s .Paths() nmethod, and the set of al
pat hs for which properties are cached by an Associati on can be
accessed through the Association’s .Paths() method. The set of
active carriers on an association can be accessed through the
Association’s .Carriers() nethod. Access to transients and paths is
not necessary in nornal operation; these accessors are provided
primarily for |ogging and debuggi ng purposes.

[Carrier]---.Transients()--->[Transient]
I N
I I I
.Association() .Carriers() . Pat hs()
| Initiate() |
\Y | \Y
[Association]---.Paths()------ >[Pat h]

Fi gure 6: Accessors on Carriers and Associ ations

Each Carrier has a .Send() nethod, by which Messages can be sent with
gi ven properties, and a .Ready() nethod, which supplies a call back
for reading Messages fromthe renpte side. .Send() is not available
on Sinks, and .Ready() is not available on Sources. Carriers also
provide .OnSent(), .OnAcked(), and .OnExpired() calls for binding
default send event handlers to the Carrier, and .OnCl osed() for
handl i ng passive close notifications.

Tramel |, et al. Expires April 30, 2018 [Page 21]

Internet-Draft Post Sockets Cct ober 2017

R [incomng]----------- +

| [Message] \%
[outgoing] ---> .Send() ---> [Carrier] <---- .Ready() <---- [Receiver]
[Message] [

+--- . OnSent ()

+--- . OnAcked()

+--- . OnExpired()

+--- . Ond osed()

Figure 7: Sending and Receiving Messages and Events

An application may have a gl obal Configuation, as well as nore
specific Configurations to apply to the establishment of a given
Association or Carrier. These Configurations are optional argunents
to the Association and Carrier creation calls.

In order to initiate a connection with a renote endpoint, a user of
Post Sockets nust start froma Renpte (see Section 2.4). A Renvote
encapsul ates identifying informati on about a renote endpoint at a
specific level of resolution. A new Renote can be wrapped around
some identifying information by via the NewRenote() call. A Renote
has a . Resolve() nethod, which can be iteratively revoked to increase
the Il evel of resolution; a call to Resolve on a given Renpte nmay
result in one to many Renotes, as shown in Figure 8. Renotes at any
| evel of resolution nay be passed to Post Sockets calls; each call
will continue resolution to the point necessary to establish or
resune a Carrier.

NewRenot e(identifiers) ---+---> Renpote] --.Resolve()---+
Figure 8: Recursive resolution of Renotes

I nformation about the |l ocal endpoint is al so necessary to establish
an Associ ation, whether explicitly or inplicitly through the creation
of a Carrier or Listener. This is passed in the formof a Local (see
Section 2.5). A Local is created with a NewLocal () call, which takes
a Configuration (including certificates to present and secret keys
associated with then) and identifying information (interface(s) and
port(s) to use).

4. Inplenentation Considerations
Here we discuss an inconplete list of APl inplenentation

consi derations that have arisen with experinentation with prototype
i mpl enent ati ons of Post.

Tramel |, et al. Expires April 30, 2018 [Page 22]

Internet-Draft Post Sockets Cct ober 2017

4.1. Protocol Stack Instance (PSl)

A PSI encapsul ates an arbitrary stack of protocols (e.g., TCP over
| Pv6, SCTP over DTLS over UDP over |Pv4). PSls provide the bridge
between the interface (Carrier) plus the current state (Transients)
and the inplenentation of a given set of transport services
[I-D.ietf-taps-transports].

A given inplenentation nmakes one or nore possible protocol stacks
available to its applications. Selection and configuration anong
multiple PSIs is based on system | evel or application policies, as
well as on network conditions in the provisioning domain in which a
connection is nade.

G+ ===4 =+ =+ =+ =+ [gl
| Carrier | | Carrier | | Carrier | | Carrier |
‘=== =+ + + + + [gty o
+::::L::::+ =+ | =+ =+ | =+ +::::::L:::+
| Transi ent | | Transi ent | | Transi ent | | Transi ent
G+ ===4 =+ =+ =+ =+ [gl
[\ / / \
‘=== =+ ‘=== =+ ‘=== =+ ‘=== =+
[PSI [[PSI [[PSI [[PSI [
+===H- - - - - 4+ +===H- - - - - 4+ +===H- - - - - 4+ R +===+
| TLS | | SCTP | | TLS | | TLS
| TCP | | DTLS | | TCP | | TCP
|1 Pv6 | | UDP | [1Pv6 | | 1 Pv4
| 802. 3 | |1 Pv6 | | 802. 11| | 802. 11|
- + | 802. 3 | Fooo oo + - +
Foeemm - +
(a) Transient (b) Carrier multiplexing (c) Multiple candi dates
bound to PSI over a multi-stream ng raci ng during session
transport protocol est abl i shnent

Fi gure 9: Exanple Protocol Stack |nstances

For exanple, Figure 9(a) shows a TLS over TCP stack, usable on nobst
net wor k connections. Protocols are layered to ensure that the PSI
provides all the transport services required by the application. A
single PSI may be bound to nultiple Carriers, as shown in

Figure 9(b): a multi-streaning transport protocol like QU C or SCTP
can support one carrier per stream \ere nulti-stream ng transport
is not available, these carriers could be serviced by different PSls
on different flows. On the other hand, nultiple PSIs are bound to a
single transient during establishnment, as shown in Figure 9(c).

Here, the losing PSI in a happy-eyeballs race will be term nated, and
the carrier will continue using the wi nning PSI

Tramel |, et al. Expires April 30, 2018 [Page 23]

Internet-Draft Post Sockets Cct ober 2017

4.2. Message Franming, Parsing, and Serialization

Wil e sone transports expose a byte stream abstraction, nost higher

| evel protocols inpose sone structure onto that byte stream That

is, the higher level protocol operates in terns of nessages, protoco
data units (PDUs), rather than using unstructured sequences of bytes,
with each nessage being processed in turn. Protocols are specified
in ternms of state machines acting on semantic nessages, with parsing
the byte streaminto nessages being a necessary annoyance, rather
than a semantic concern. Accordingly, Post Sockets exposes a
message-based APl to applications as the prinmary abstraction
Protocol s that deal only in byte streams, such as TCP, represent
their data in each direction as a single, |ong nessage. VWhen fram ng
protocol s are placed on top of byte streans, the nessages used in the
APl represent the franed nmessages within the stream

There are other benefits of providing a nessage-oriented APl beyond
fram ng PDUs that Post Sockets shoul d provide when supported by the
underlying transport. These include:

0o the ability to associate deadlines with nessages, for transports
that care about timng;

o the ability to provide control of reliability, choosing what
messages to retransnit in the event of packet |oss, and how best
to nmake use of the data that arrived;

o the ability to manage dependenci es between nessages, when sone
messages may not be delivered due to either packet |oss or m ssing
a deadline, in particular the ability to avoid (re-)sending data
that relies on a previous transm ssion that was never received.

Al'l require explicit nessage boundaries, and application-I|evel
fram ng of nessages, to be effective. Once a nessage is passed to
Post Sockets, it can not be cancelled or paused, but prioritization
as well as lifetime and retransni ssion managenment will provide the
protocol stack with all needed information to send the nessages as
qui ckly as possible w thout bl ocking transm ssion unnecessarily.
Post Sockets provides this by handling nessage, with known identity
(sequence nunbers, in the sinple case), lifetines, niceness, and
ant ecedent s.

Transport protocols such as SCTP provide a nmessage-oriented APl that
has simlar features to those we describe. Oher transports, such as
TCP, do not. To support a nessage oriented API, while still being
conpatible with stream based transport protocols, Post Sockets nust
provide APls for parsing and serialising nessages that understand the
protocol data. That is, we push nessage parsing and serialisation

Tramel |, et al. Expires April 30, 2018 [Page 24]

Internet-Draft Post Sockets Cct ober 2017

down into the Post Sockets stack, allow ng applications to send and
receive strongly typed data objects (e.g., a receive call on an HITP
Message Carrier should return an object representing the HITP
response, with pre-parsed status code, headers, and any nessage body,
rather than returning a byte array that the application has to parse
itself). This is backwards conpatible with existing protocols and
APl's, since the wire fornmat of nmessages does not change, but gives a
Post Sockets stack additional information to allow it to nake better
use of nodern transport services

The Post Sockets approach is therefore to raise the semantic | evel of
the transport API: applications should send and receive nessages in
the form of meaningful, strongly typed, protocol data. Parsing and
serialising such nessages should be a re-usable function of the
protocol stack instance not the application. This is well-suited to
i npl ementation in nodern systens | anguages, such as Swift, Go, Rust,
or C++, but can also be inplenmented with sone | oss of type safety in
C

4.3. Message Size Limtations

I deal | y, Messages can be of infinite size. However, protocol stacks
and protocol stack inplenentations nmay i npose their own limits on
nmessage sizing; For exanple, SCTP [RFC4960] and TLS
[I-Dietf-tls-tlsl13] inpose record size linmitations of 64kB and 16kB
respectively. Message sizes may also be limted by the avail able
buffer at the receiver, since a Message nust be fully assenbl ed by
the transport layer before it can be passed on to the application

| ayer. Since not every transport protocol stack inplenents the
signaling necessary to negotiate or expose nessage size limtations,
these may need to be defined out of band, and are probably best
exposed through the Configuration

Atruly infinite nmessage service - e.g. large file transfer where
bot h endpoi nts have comitted persistent storage to the nessage - is
probably best realized as a | ayer above Post Sockets, and nmay be
added as a new type of Message Carrier to a future revision of this
docurnent .

4.4. Back-pressure

Regar dl ess of how asynchronous reception is inplenmented, it is
important for an application to be able to apply receiver back-
pressure, to allow the protocol stack to performreceiver flow
control. Depending on how asynchronous I/O works in the platform
this could be inplenented by having a maxi num nunber of concurrent
recei ve cal |l backs, or by boundi ng the nmaxi num nunber of outstanding,
unread bytes at any given tine, for exanple.

Tramel |, et al. Expires April 30, 2018 [Page 25]

Internet-Draft Post Sockets Cct ober 2017

4.5. Associations, Transients, Racing, and Rendezvous

As the network has evol ved, even the sinple act of establishing a
connection has becone increasingly conplex. dients nowregularly
race nultiple connections, for exanple over IPv4 and | Pv6, to

det ermi ne which protocol to use. The choice of outgoing interface
has al so beconme nore inportant, with differential reachability and
performance fromnultiple interfaces. Nane resolution can also give
di fferent outcomes depending on the interface the query was issued
from Finally, but often nost significantly, NAT traversal, relay
di scovery, and path state nmi ntenance nessages are an essential part
of connection establishnment, especially for peer-to-peer
appl i cations.

Post Sockets accordingly breaks conmuni cation establishnent down into
mul ti pl e phases:

0 Gathering Locals

The set of possible Locals is gathered. |In the sinple case, this
merely enunerates the local interfaces and protocols, and

al | ocat es epheneral source ports for transients. For exanple, a
systemthat has WF and Ethernet and supports |Pv4 and | Pv6 mi ght
gather four candidate locals (IPv4 on Ethernet, |Pv6 on Ethernet,
| Pv4 on WFi, and IPv6 on WFi) that can formthe source for a
transi ent.

If NAT traversal is required, the process of gathering |ocals
becones broadly equivalent to the | CE candi date gat hering phase

[RFC5245]. The endpoint determines its server reflexive |locals
(i.e., the translated address of a local, on the other side of a
NAT) and rel ayed locals (e.g., via a TURN server or other relay),
for each interface and network protocol. These are added to the
set of candidate locals for this association.

Gathering locals is primarily an endpoint | ocal operation,

al though it might involve exchanges with a STUN server to derive
server reflexive locals, or with a TURN server or other relay to
derive relayed locals. It does not involve conmunication with the
renot e.

0 Resolving the Renote

The renote is typically a name that needs to be resolved into a
set of possible addresses that can be used for conmunication
Resolving the renpote is the process of recursively perform ng such
nane | ookups, until fully resolved, to return the set of

candi dates for the renote of this association

Tramel |, et al. Expires April 30, 2018 [Page 26]

Internet-Draft Post Sockets Cct ober 2017

How this is done will depend on the type of the Renbte, and can

al so be specific to each local. A comon case is when the Renote
is a DNS nanme, in which case it is resolved to give a set of |IPv4
and | Pv6 addresses representing that nane. Sone types of renote
m ght require nore conplex resolution. Resolving the renote for a
peer -t o-peer connection might involve comunication with a
rendezvous server, which in turn contacts the peer to gain consent
to comuni cate and retrieve its set of candidate |locals, which are
returned and formthe candidate renpote addresses for contacting

t hat peer.

Resolving the renote is not_a local operation. It wll involve
a directory service, and can require communication with the renote
to rendezvous and exchange peer addresses. This can expose sone
or all of the candidate |locals to the renote.

o0 Establishing Transients

The set of candidate |ocals and the set of candidate renotes are
paired, to derive a priority ordered set of Candi date Paths that
can potentially be used to establish a connection

Then, communi cation is attenpted over each candidate path, in
priority order. |If there are multiple candidates with the sane
priority, then transient establishment proceeds sinultaneously and
uses the transient that wins the race to be established.

O herwi se, transients establishment is sequential, paced at a rate
that should not congest the network. Depending on the chosen
transport, this phase mght involve racing TCP connections to a
server over |Pv4 and | Pv6 [RFC6555], or it could involve a STUN
exchange to establish peer-to-peer UDP connectivity [RFC5245], or
some ot her means.

0 Confirm ng and Maintaining Transients

Once connectivity has been established, unused resources can be
rel eased and the chosen path can be confirned. This is primarily
requi red when establishing peer-to-peer connectivity, where
connections supporting relayed | ocals that were not required can
be closed, and where an associ ated signalling operation m ght be
needed to inform m ddl eboxes and proxi es of the chosen path.
Keep-alive nmessages may al so be sent, as appropriate, to ensure
NAT and firewall state is mmintained, so the transient remains
oper ati onal

By encapsul ating these four phases of communication establishnent

into the PSI, Post Sockets ains to sinplify application devel opnent.
It can provide reusable inplenentations of connection racing for TCP

Tramel |, et al. Expires April 30, 2018 [Page 27]

Internet-Draft Post Sockets Cct ober 2017

to enabl e happy eyeballs, that will be automatically used by all TCP
clients, for exanple. Wth appropriate callbacks to drive the
rendezvous signalling as part of resolving the renote, we believe a
generic I CE inpl enentation ought also to be possible. This procedure
can even be repeated fully or partially during a connection to enabl e
seam ess hand-over and nmobility within the network stack.

5. Acknow edgnent s

Many thanks to Laurent Chuat and Jason Lee at the Network Security
Group at ETH Zurich for contributions to the initial design of Post
Sockets. Thanks to Joe Hildebrand, Martin Thonson, and M chael Wl zl
for their feedback, as well as the attendees of the Post Sockets

wor kshop in February 2017 in Zurich for the discussions, which have
i nproved the design described herein.

This work is partially supported by the European Conmi ssi on under
Hori zon 2020 grant agreenent no. 688421 Measurenent and Architecture
for a Mddl eboxed Internet (MAM), and by the Swiss State Secretariat
for Education, Research, and Innovation under contract no. 15.0268.
Thi s support does not inply endorsenent.

6. References
6.1. Nornmamtive References

[I-D.ietf-taps-transports]
Fairhurst, G, Trammell, B., and M Kuehl ewi nd, "Services
provided by | ETF transport protocols and congestion
control mechanisns", draft-ietf-taps-transports-14 (work
in progress), Decenber 2016.

6. 2. I nformati ve References

[I-D.ietf-quic-transport]
lyengar, J. and M Thonson, "QUI C. A UDP-Based Milti pl exed
and Secure Transport"”, draft-ietf-quic-transport-07 (work
in progress), Cctober 2017.

[I-Dietf-tls-tlsl3]
Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", draft-ietf-tls-tlsl13-21 (work in progress),
July 2017.

[1-D.iyengar-m ni on-protocol]
Jana, J., Cheshire, S., and J. Graessley, "Mnion - Wre
Protocol ", draft-iyengar-mnion-protocol-02 (work in
progress), Cctober 2013.

Tramel |, et al. Expires April 30, 2018 [Page 28]

Internet-Draft Post Sockets Cct ober 2017

[1-D. kuehl ewi nd-t aps-crypt o-sep]
Kuehl ewi nd, M, Pauly, T., and C. Wod, "Separating Crypto
Negoti ati on and Conmuni cati on", draft-kuehl ewi nd-taps-
crypto-sep-00 (work in progress), July 2017.

[1-D. paul y-taps-transport-security]
Pauly, T. and C. Wod, "A Survey of Transport Security
Prot ocol s, draft-pauly-taps-transport-security-00 (work
in progress), July 2017.

[I-D.tramrel | - pl us-abstract - nech]
Tramrel |, B., "Abstract Mechani sns for a Cooperative Path
Layer under Endpoint Control", draft-trammell-plus-
abstract-nech-00 (work in progress), Septenber 2016.

[I-D.trammel | - pl us-st at ef ul ness]
Kuehl ewi nd, M, Tramell, B., and J. Hildebrand,
"Transport - | ndependent Path Layer State Managenent",
draft-tranmmel | - pl us-stateful ness-03 (work in progress),
March 2017.

[M ni maLT]
Petullo, W, ZzZhang, X., Solworth, J., Bernstein, D., and
T. Lange, "M ni maLT, M ninmal-Iatency Networking Through
Better Security", My 2013.

[NEAT] Ginneno, K-J., Tom Jones, ., CGorry Fairhurst, ., David
Ros, ., Anna Brunstrom ., and . Per Hurtig, "Towards a
Fl exi bl e I nternet Transport Layer Architecture", June
2016.

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, DO 10.17487/ RFC0793, Septenber 1981,
<https://www. rfc-editor.org/info/rfc793>.

[RFC4960] Stewart, R, Ed., "Stream Control Transni ssion Protocol",
RFC 4960, DO 10. 17487/ RFC4960, Septenber 2007,
<https://www.rfc-editor.org/info/rfc4960>.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishnent
(ICE): A Protocol for Network Address Transl ator (NAT)
Traversal for Ofer/Answer Protocols", RFC 5245,
DO 10.17487/ RFC5245, April 2010,
<https://www. rfc-editor.org/info/rfc5245>.

[RFC6555] Wng, D. and A Yourtchenko, "Happy Eyeballs: Success with

Dual - Stack Hosts", RFC 6555, DO 10.17487/ RFC6555, April
2012, <https://www.rfc-editor.org/info/rfc6555>.

Tramel |, et al. Expires April 30, 2018 [Page 29]

Internet-Draft Post Sockets Cct ober 2017

[RFC6698]

[RFC6824]

[RFC7258]

[RFC7413]

[RFC7556]

Appendi x A

Hof fman, P. and J. Schlyter, "The DNS-Based Authentication
of Nanmed Entities (DANE) Transport Layer Security (TLS)
Protocol : TLSA', RFC 6698, DA 10.17487/ RFC6698, August
2012, <https://ww.rfc-editor.org/info/rfc6698>.

Ford, A, Raiciu, C, Handley, M, and O Bonaventure,
"TCP Extensions for Multipath Operation with Miltiple
Addresses", RFC 6824, DO 10.17487/ RFC6824, January 2013,
<https://www. rfc-editor.org/info/rfc6824>.

Farrell, S. and H Tschofenig, "Pervasive Mnitoring |Is an
Attack", BCP 188, RFC 7258, DO 10.17487/ RFC7258, My
2014, <https://ww.rfc-editor.org/info/rfc7258>.

Cheng, Y., Chu, J., Radhakrishnan, S., and A Jain, "TCP
Fast Open", RFC 7413, DO 10. 17487/ RFC7413, Decenber 2014,
<https://www. rfc-editor.org/info/rfc7413>.

Ani pko, D., Ed., "Miltiple Provisioning Domain
Architecture", RFC 7556, DA 10.17487/ RFC7556, June 2015,
<https://www. rfc-editor.org/info/rfc7556>.

Open | ssues

This docunment is under active developnent; a list of current open
i ssues is available at https://github.com man -project/draft-
trammel | - post - socket s/ i ssues

Aut hors’ Addr esses

Brian Trammel |

ETH Zuri ch

d oriastrasse 35
8092 Zurich
Switzerl and

Emmil: ietf@ramel|.ch

Col in Perkins

Uni versity of d asgow
School of Conmputing Science
d asgow Gl2 8QQ

United Ki ngdom

Emai | : csp@sperkins.org

Tramel |, et al. Expires April 30, 2018 [Page 30]

Internet-Draft Post Sockets Cct ober 2017

Tommy Paul y

Appl e Inc.
1 Infinite Loop

Cupertino, California 95014
United States of Anerica

Emai | . tpaul y@ppl e. com

Mrja Kuehl ewi nd
ETH Zurich
d oriastrasse 35
8092 Zurich
Swi t zer |l and

Email: mirja. kuehlewi nd@i k. ee. ethz. ch

Chri s Wod

Appl e Inc.
1 Infinite Loop

Cupertino, California 95014
United States of Anerica

Emai | : cawood@ppl e. com

Tramel |, et al. Expires April 30, 2018 [Page 31]

