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Abstract

   This document describes Post Sockets, an asynchronous abstract
   programming interface for the atomic transmission of messages in an
   inherently multipath environment.  Post replaces connections with
   long-lived associations between endpoints, with the possibility to
   cache cryptographic state in order to reduce amortized connection
   latency.  We present this abstract interface as an illustration of
   what is possible with present developments in transport protocols
   when freed from the strictures of the current sockets API.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 30, 2018.
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1.  Introduction

   The BSD Unix Sockets API’s SOCK_STREAM abstraction, by bringing
   network sockets into the UNIX programming model, allowing anyone who
   knew how to write programs that dealt with sequential-access files to
   also write network applications, was a revolution in simplicity.  It
   would not be an overstatement to say that this simple API is the
   reason the Internet won the protocol wars of the 1980s.  SOCK_STREAM
   is tied to the Transmission Control Protocol (TCP), specified in 1981
   [RFC0793].  TCP has scaled remarkably well over the past three and a
   half decades, but its total ubiquity has hidden an uncomfortable
   fact: the network is not really a file, and stream abstractions are
   too simplistic for many modern application programming models.

   In the meantime, the nature of Internet access, and the variety of
   Internet transport protocols, is evolving.  The challenges that new
   protocols and access paradigms present to the sockets API and to
   programming models based on them inspire the design elements of a new
   approach.

   Many end-user devices are connected to the Internet via multiple
   interfaces, which suggests it is time to promote the paths by which
   two endpoints are connected to each other to a first-order object.
   While implicit multipath communication is available for these
   multihomed nodes in the present Internet architecture with the
   Multipath TCP extension (MPTCP) [RFC6824], MPTCP was specifically
   designed to hide multipath communication from the application for
   purposes of compatibility.  Since many multihomed nodes are connected
   to the Internet through access paths with widely different properties
   with respect to bandwidth, latency and cost, adding explicit path
   control to MPTCP’s API would be useful in many situations.

   Another trend straining the traditional layering of the transport
   stack associated with the SOCK_STREAM interface is the widespread
   interest in ubiquitous deployment of encryption to guarantee
   confidentiality, authenticity, and integrity, in the face of
   pervasive surveillance [RFC7258].  Layering the most widely deployed
   encryption technology, Transport Layer Security (TLS), strictly atop
   TCP (i.e., via a TLS library such as OpenSSL that uses the sockets
   API) requires the encryption-layer handshake to happen after the
   transport-layer handshake, which increases connection setup latency
   on the order of one or two round-trip times, an unacceptable delay
   for many applications.  Integrating cryptographic state setup and
   maintenance into the path abstraction naturally complements efforts
   in new protocols (e.g.  QUIC [I-D.ietf-quic-transport]) to mitigate
   this strict layering.
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   To meet these challenges, we present the Post-Sockets Application
   Programming Interface (API), described in detail in this work.  Post
   is designed to be language, transport protocol, and architecture
   independent, allowing applications to be written to a common abstract
   interface, easily ported among different platforms, and used even in
   environments where transport protocol selection may be done
   dynamically, as proposed in the IETF’s Transport Services working
   group.

   Post replaces the traditional SOCK_STREAM abstraction with a Message
   abstraction, which can be seen as a generalization of the Stream
   Control Transmission Protocol’s [RFC4960] SOCK_SEQPACKET service.
   Messages are sent and received on Carriers, which logically group
   Messages for transmission and reception.  For backward compatibility,
   bidirectional byte stream protocols are represented as a pair of
   Messages, one in each direction, that can only be marked complete
   when the sending peer has finished transmitting data.

   Post replaces the notions of a socket address and connected socket
   with an Association with a remote endpoint via set of Paths.
   Implementation and wire format for transport protocol(s) implementing
   the Post API are explicitly out of scope for this work; these
   abstractions need not map directly to implementation-level concepts,
   and indeed with various amounts of shimming and glue could be
   implemented with varying success atop any sufficiently flexible
   transport protocol.

   The key features of Post as compared with the existing sockets API
   are:

   o  Explicit Message orientation, with framing and atomicity
      guarantees for Message transmission.

   o  Asynchronous reception, allowing all receiver-side interactions to
      be event-driven.

   o  Explicit support for multistreaming and multipath transport
      protocols and network architectures.

   o  Long-lived Associations, whose lifetimes may not be bound to
      underlying transport connections.  This allows associations to
      cache state and cryptographic key material to enable fast
      resumption of communication, and for the implementation of the API
      to explicitly take care of connection establishment mechanics such
      as connection racing [RFC6555] and peer-to-peer rendezvous
      [RFC5245].
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   o  Transport protocol stack independence, allowing applications to be
      written in terms of the semantics best for the application’s own
      design, separate from the protocol(s) used on the wire to achieve
      them.  This enables applications written to a single API to make
      use of transport protocols in terms of the features they provide,
      as in [I-D.ietf-taps-transports].

   This work is the synthesis of many years of Internet transport
   protocol research and development.  It is inspired by concepts from
   the Stream Control Transmission Protocol (SCTP) [RFC4960], TCP Minion
   [I-D.iyengar-minion-protocol], and MinimaLT [MinimaLT], among other
   transport protocol modernization efforts.  We present Post as an
   illustration of what is possible with present developments in
   transport protocols when freed from the strictures of the current
   sockets API.  While much of the work for building parts of the
   protocols needed to implement Post are already ongoing in other IETF
   working groups (e.g.  MPTCP, QUIC, TLS), we argue that an abstract
   programming interface unifying access all these efforts is necessary
   to fully exploit their potential.

2.  Abstractions and Terminology

Trammell, et al.         Expires April 30, 2018                 [Page 5]



Internet-Draft                Post Sockets                  October 2017

           +===============+
           |    Message    |
           +===============+
                |    ^         |               |
          send()|    |ready()  |initiate()     |listen()
                V    |         V               V
           +=======================+         +============+
           |                       | accept()|            |
           |       Carrier         |<--------|  Listener  |
           |                       |         |            |
           +=======================+         +============+
            |1        |          n|                |             +=========+
            |         |           |1               |         +---|  Local  |
            | +===============+  +=======================+   |   +=========+
            | |               |  |                       |---+
            | | Configuration |--|      Association      |       +=========+
            | |               |  |                       |-------|  Remote |
            | +===============+  +=======================+       +=========+
            |         |                1| durable end-to-end
            +-------+ |                 | state via many paths,
                    | |                 | policies, and prefs
                   n| |                n|
               +===========+       +==========+
     ephemeral |           |       |          |
   transport & | Transient |-------|   Path   | properties of
  crypto state |           |n     1|          | address pair
               +===========+       +==========+

         Figure 1: Abstractions and relationships in Post Sockets

   Post is based on a small set of abstractions, centered around a
   Message Carrier as the entry point for an application to the
   networking API.  The relationships among them are shown in
   Figure Figure 1 and detailed in this section.

2.1.  Message Carrier

   A Message Carrier (or simply Carrier) is a transport protocol stack-
   independent interface for sending and receiving messages between an
   application and a remote endpoint; it is roughly analogous to a
   socket in the present sockets API.

   Sending a Message over a Carrier is driven by the application, while
   receipt is driven by the arrival of the last packet that allows the
   Message to be assembled, decrypted, and passed to the application.
   Receipt is therefore asynchronous; given the different models for
   asynchronous I/O and concurrency supported by different platforms, it
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   may be implemented in any number of ways.  The abstract API provides
   only for a way for the application to register how it wants to handle
   incoming messages.

   All the Messages sent to a Carrier will be received on the
   corresponding Carrier at the remote endpoint, though not necessarily
   reliably or in order, depending on Message properties and the
   underlying transport protocol stack.

   A Carrier that is backed by current transport protocol stack state
   (such as a TCP connection; see Section 2.7) is said to be "active":
   messages can be sent and received over it.  A Carrier can also be
   "dormant": there is long-term state associated with it (via the
   underlying Association; see Section 2.3), and it may be able to
   reactivated, but messages cannot be sent and received immediately.
   Carriers become dormant when the underlying transport protocol stack
   determines that an underlying connection has been lost and there is
   insufficient state in the Association to re-establish it (e.g., in
   the case of a server-side Carrier where the client’s address has
   changed unexpectedly).  Passive close can be handled by the
   application via an event on the carrier.  Attempting to use a carrier
   after passive close results in an error.

   If supported by the underlying transport protocol stack, a Carrier
   may be forked: creating a new Carrier associated with a new Carrier
   at the same remote endpoint.  The semantics of the usage of multiple
   Carriers based on the same Association are application-specific.
   When a Carrier is forked, its corresponding Carrier at the remote
   endpoint receives a fork request, which it must accept in order to
   fully establish the new carrier.  Multiple Carriers between endpoints
   are implemented differently by different transport protocol stacks,
   either using multiple separate transport-layer connections, or using
   multiple streams of multistreaming transport protocols.

   To exchange messages with a given remote endpoint, an application may
   initiate a Carrier given its remote (see Section 2.4 and local (see
   Section 2.5) identities; this is an equivalent to an active open.
   There are four special cases of Carriers, as well, supporting
   different initiation and interaction patterns, defined in the
   subsections below.

   o  Listener: A Listener is a special case of Message Carrier which
      only responds to requests to create a new Carrier from a remote
      endpoint, analogous to a server or listening socket in the present
      sockets API.  Instead of being bound to a specific remote
      endpoint, it is bound only to a local identity; however, its
      interface for accepting fork requests is identical to that for
      fully fledged Carriers.
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   o  Source: A Source is a special case of Message Carrier over which
      messages can only be sent, intended for unidirectional
      applications such as multicast transmitters.  Sources cannot be
      forked, and need not accept forks.

   o  Sink: A Sink is a special case of Message Carrier over which
      messages can only be received, intended for unidirectional
      applications such as multicast receivers.  Sinks cannot be forked,
      and need not accept forks.

   o  Responder: A Responder is a special case of Message Carrier which
      may receive messages from many remote sources, for cases in which
      an application will only ever send Messages in reply back to the
      source from which a Message was received.  This is a common
      implementation pattern for servers in client-server applications.
      A Responder’s receiver gets a Message, as well as a Source to send
      replies to.  Responders cannot be forked, and need not accept
      forks.

2.2.  Message

   A Message is the unit of communication between applications.
   Messages can represent relatively small structures, such as requests
   in a request/response protocol such as HTTP; relatively large
   structures, such as files of arbitrary size in a filesystem; and
   structures of indeterminate length, such as a stream of bytes in a
   protocol like TCP.

   In the general case, there is no mapping between a Message and
   packets sent by the underlying protocol stack on the wire: the
   transport protocol may freely segment messages and/or combine
   messages into packets.  However, a message may be marked as
   immediate, which will cause it to be sent in a single packet when
   possible.

   Content may be sent and received either as Complete or Partial
   Messages.  Dealing with Complete Messages should be preferred for
   simplicity whenever possible based on the underlying protocol.  It is
   always possible to send Complete Messages, but only protocols that
   have a fixed maximum message length may allow clients to receive
   Messages using an API that guarantees Complete Messages.  Sending and
   receiving Partial Messages (that is, a Message whose content spans
   multiple calls or callbacks) is always possible.

   To send a Message, either Complete or Partial, the Message content is
   passed into the Carrier, and client provides a set of callbacks to
   know when the Message was delivered or acknowledged.  The client of
   the API may use the callbacks to pace the sending of Messages.
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   To receive a Message, the client of the API schedules a completion to
   be called when a Complete or Partial Message is available.  If the
   client is willing to accept Partial Messages, it can specify the
   minimum incomplete Message length it is willing to receive at once,
   and the maximum number of bytes it is willing to receive at once.  If
   the client wants Complete Messages, there are no values to tune.  The
   scheduling of the receive completion indicates to the Carrier that
   there is a desire to receive bytes, effectively creating a "pull
   model" in which backpressure may be applied if the client is not
   receiving Messages or Partial Messages quickly enough to match the
   peer’s sending rate.  The Carrier may have some minimal buffer of
   incoming Messages ready for the client to read to reduce latency.

   When receiving a Complete Message, the entire content of the Message
   must be delivered at once, and the Message is not delivered at all if
   the full Message is not received.  This implies that both the sending
   and receiving endpoint, whether in the application or the carrier,
   must guarantee storage for the full size of a Message.

   Partial Messages may be sent or received in several stages, with a
   handle representing the total Message being associated with each
   portion of the content.  Each call to send or receive also indicates
   whether or not the Message is now complete.  This approach is
   necessary whenever the size of the Message does not have a known
   bound, or the size is too large to process and hold in memory.
   Protocols that only present a concept of byte streams represent their
   data as single Messages with unknown bounds.  In the case of TCP, the
   client will receive a single Message in pieces using the Partial
   Message API, and that Message will only be marked as complete when
   the peer has sent a FIN.

   Messages are sent over and received from Message Carriers (see
   Section 2.1).

   On sending, Messages have properties that allow the application to
   specify its requirements with respect to reliability, ordering,
   priority, idempotence, and immediacy; these are described in detail
   below.  Messages may also have arbitrary properties which provide
   additional information to the underlying transport protocol stack on
   how they should be handled, in a protocol-specific way.  These stacks
   may also deliver or set properties on received messages, but in the
   general case a received messages contains only a sequence of ordered
   bytes.  Message properties include:

   o  Lifetime and Partial Reliability: A Message may have a "lifetime"
      - a wall clock duration before which the Message must be available
      to the application layer at the remote end.  If a lifetime cannot
      be met, the Message is discarded as soon as possible.  Messages
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      without lifetimes are sent reliably if supported by the transport
      protocol stack.  Lifetimes are also used to prioritize Message
      delivery.

      There is no guarantee that a Message will not be delivered after
      the end of its lifetime; for example, a Message delivered over a
      strictly reliable transport will be delivered regardless of its
      lifetime.  Depending on the transport protocol stack used to
      transmit the message, these lifetimes may also be signalled to
      path elements by the underlying transport, so that path elements
      that realize a lifetime cannot be met can discard frames
      containing the Messages instead of forwarding them.

   o  Priority: Messages have a "niceness" - a priority among other
      messages sent over the same Carrier in an unbounded hierarchy most
      naturally represented as a non-negative integer.  By default,
      Messages are in niceness class 0, or highest priority.  Niceness
      class 1 Messages will yield to niceness class 0 Messages sent over
      the same Carrier, class 2 to class 1, and so on.  Niceness may be
      translated to a priority signal for exposure to path elements
      (e.g.  DSCP code point) to allow prioritization along the path as
      well as at the sender and receiver.  This inversion of normal
      schemes for expressing priority has a convenient property:
      priority increases as both niceness and lifetime decrease.  A
      Message may have both a niceness and a lifetime - Messages with
      higher niceness classes will yield to lower classes if resource
      constraints mean only one can meet the lifetime.

   o  Dependence: A Message may have "antecedents" - other Messages on
      which it depends, which must be delivered before it (the
      "successor") is delivered.  The sending transport uses deadlines,
      niceness, and antecedents, along with information about the
      properties of the Paths available, to determine when to send which
      Message down which Path.

   o  Idempotence: A sending application may mark a Message as
      "idempotent" to signal to the underlying transport protocol stack
      that its application semantics make it safe to send in situations
      that may cause it to be received more than once (i.e., for 0-RTT
      session resumption as in TCP Fast Open, TLS 1.3, and QUIC).

   o  Immediacy: A sending application may mark a Message as "immediate"
      to signal to the underlying transport protocol stack that its
      application semantics require it to be placed in a single packet,
      on its own, instead of waiting to be combined with other messages
      or parts thereof (i.e., for media transports and interactive
      sessions with small messages).
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   Senders may also be asynchronously notified of three events on
   Messages they have sent: that the Message has been transmitted, that
   the Message has been acknowledged by the receiver, or that the
   Message has expired before transmission/acknowledgement.  Not all
   transport protocol stacks will support all of these events.

2.3.  Association

   An Association contains the long-term state necessary to support
   communications between a Local (see Section 2.5) and a Remote (see
   Section 2.4) endpoint, such as trust model information, including
   pinned public keys or anchor certificates, cryptographic session
   resumption parameters, or rendezvous information.  It uses
   information from the Configuration (see Section 2.6) to constrain the
   selection of transport protocols and local interfaces to create
   Transients (see Section 2.7) to carry Messages; and information about
   the paths through the network available available between them (see
   Section 2.8).

   All Carriers are bound to an Association.  New Carriers will reuse an
   Association if they can be carried from the same Local to the same
   Remote over the same Paths; this re-use of an Association may implies
   the creation of a new Transient.

   Associations may exist and be created without a Carrier.  This may be
   done if peer cryptographic state such as a pre-shared key is
   established out-of-band.  Thus, Associations may be created without
   the need to send application data to a peer, that is, without a
   Carrier.  Associations are mutable.  Association state may expire
   over time, after which it is removed from the Association, and
   Transients may export cryptographic state to store in an Association
   as needed.  Moreover, this state may be exported directly into the
   Association or modified before insertion.  This may be needed to
   diversify ephemeral Transient keying material from the longer-term
   Association keying material.

   A primary use of Association state is to allow new Associations and
   their derived Carriers to be quickly created without performing in-
   band cryptographic handshakes.  See [I-D.kuehlewind-taps-crypto-sep]
   for more details about this separation.

2.4.  Remote

   A Remote represents information required to establish and maintain a
   connection with the far end of an Association: name(s), address(es),
   and transport protocol parameters that can be used to establish a
   Transient; transport protocols to use; trust model information,
   inherited from the relevant Association, used to identify the remote
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   on connection establishment; and so on.  Each Association is
   associated with a single Remote, either explicitly by the application
   (when created by the initiation of a Carrier) or a Listener (when
   created by forking a Carrier on passive open).

   A Remote may be resolved, which results in zero or more Remotes with
   more specific information.  For example, an application may want to
   establish a connection to a website identified by a URL
   https://www.example.com.  This URL would be wrapped in a Remote and
   passed to a call to initiate a Carrier.  The first pass resolution
   might parse the URL, decomposing it into a name, a transport port,
   and a transport protocol to try connecting with.  A second pass
   resolution would then look up network-layer addresses associated with
   that name through DNS, and store any certificates available from
   DANE.  Once a Remote has been resolved to the point that a transport
   protocol stack can use it to create a Transient, it is considered
   fully resolved.

2.5.  Local

   A Local represents all the information about the local endpoint
   necessary to establish an Association or a Listener.  It encapsulates
   the Provisioning Domain (PvD) of a single interface in the multiple
   provisioning domain architecture [RFC7556], and adds information
   about the service endpoint (transport protocol port), and, per
   [I-D.pauly-taps-transport-security], cryptographic identities
   (certificates and associated private keys) bound to this endpoint.

2.6.  Configuration

   A Configuration encapsulates an application’s preferences around Path
   selection and protocol options.

   Each Association has exactly one Configuration, and all Carriers
   belonging to that Association share the same Configuration.

   The application cannot modify the Configuration for a Carrier or
   Association once it is set.  If a new set of options needs to be
   used, then the application needs a new Carrier or Association
   instance.  This is necessary to ensure that a single Carrier can
   consistently track the Paths and protocol options it uses, since it
   is usually not possible to modify these properties without breaking
   connectivity.

   To influence Path selection, the application can configure a set of
   requirements, preferences, and restrictions concerning which Paths
   may be selected by the Association to use for creating Transients
   between a Local and a Remote.  For example, a Configuration can
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   specify that the application prefers Wi-Fi access over LTE when
   roaming on a foreign LTE network, due to monetary cost to the user.

   The Association uses the Configuration’s Path preferences as a key
   part of determining the Paths to use for its Transients.  The
   Configuration is provided as input when examining the complete list
   of available Paths on the system (to limit the list, or order the
   Paths by preference).  The system’s policy will further restrict and
   modify the Path that is ultimately selected, using other aspects of
   the Configuration (protocol options and originating application) to
   select the most appropriate Path.

   To influence protocol selection and options, the Configuration
   contains one or more allowed Protocol Stack Configurations.  Each of
   these is comprised of application- and transport-layer protocols that
   may be used together to communicate to the Remote, along with any
   protocol-specific options.  For example, a Configuration could
   specify two alternate, but equivalent, protocol stacks: one using
   HTTP/2 over TLS over TCP, and the other using QUIC over UDP.
   Alternatively, the Configuration could specify two protocol stacks
   with the same protocols, but different protocol options: one using
   TLS with TLS 1.3 0-RTT enabled and TCP with TCP Fast-Open enabled,
   and one using TLS with out 0-RTT and TCP without TCP Fast-Open.

   Protocol-specific options within the Configuration include trust
   settings and acceptable cryptographic algorithms to be used by
   security protocols.  These may be configured for specific protocols
   to allow different settings for each (such as between TLS over TCP
   and TLS for use with QUIC), or set as default security settings on
   the Configuration to be used by any protocol that needs to evaluate
   trust.  Trust settings may include certificate anchors and
   certificate pinning options.

2.7.  Transient

   A Transient represents a binding between a Carrier and the instance
   of the transport protocol stack that implements it.  As an
   Association contains long-term state for communications between two
   endpoints, a Transient contains ephemeral state for a single
   transport protocol over a one or more Paths at a given point in time.

   A Carrier may be served by multiple Transients at once, e.g. when
   implementing multipath communication such that the separate paths are
   exposed to the API by the underlying transport protocol stack.  Each
   Transient serves only one Carrier, although multiple Transients may
   share the same underlying protocol stack; e.g. when multiplexing
   Carriers over streams in a multistreaming protocol.
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   Transients are generally not exposed by the API to the application,
   though they may be accessible for debugging and logging purposes.

2.8.  Path

   A Path represents information about a single path through the network
   used by an Association, in terms of source and destination network
   and transport layer addresses within an addressing context, and the
   provisioning domain [RFC7556] of the local interface.  This
   information may be learned through a resolution, discovery, or
   rendezvous process (e.g.  DNS, ICE), by measurements taken by the
   transport protocol stack, or by some other path information discovery
   mechanism.  It is used by the transport protocol stack to maintain
   and/or (re-)establish communications for the Association.

   The set of available properties is a function of the transport
   protocol stacks in use by an association.  However, the following
   core properties are generally useful for applications and transport
   layer protocols to choose among paths for specific Messages:

   o  Maximum Transmission Unit (MTU): the maximum size of an Message’s
      payload (subtracting transport, network, and link layer overhead)
      which will likely fit into a single frame.  Derived from signals
      sent by path elements, where available, and/or path MTU discovery
      processes run by the transport layer.

   o  Latency Expectation: expected one-way delay along the Path.
      Generally provided by inline measurements performed by the
      transport layer, as opposed to signaled by path elements.

   o  Loss Probability Expectation: expected probability of a loss of
      any given single frame along the Path.  Generally provided by
      inline measurements performed by the transport layer, as opposed
      to signaled by path elements.

   o  Available Data Rate Expectation: expected maximum data rate along
      the Path.  May be derived from passive measurements by the
      transport layer, or from signals from path elements.

   o  Reserved Data Rate: Committed, reserved data rate for the given
      Association along the Path.  Requires a bandwidth reservation
      service in the underlying transport protocol stack.

   o  Path Element Membership: Identifiers for some or all nodes along
      the path, depending on the capabilities of the underlying network
      layer protocol to provide this.

Trammell, et al.         Expires April 30, 2018                [Page 14]



Internet-Draft                Post Sockets                  October 2017

   Path properties are generally read-only.  MTU is a property of the
   underlying link-layer technology on each link in the path; latency,
   loss, and rate expectations are dynamic properties of the network
   configuration and network traffic conditions; path element membership
   is a function of network topology.  In an explicitly multipath
   architecture, application and transport layer requirements can be met
   by having multiple paths with different properties to select from.
   Transport protocol stacks can also provide signaling to devices along
   the path, but this signaling is derived from information provided to
   the Message abstraction.

3.  Abstract Programming Interface

   We now turn to the design of an abstract programming interface to
   provide a simple interface to Post’s abstractions, constrained by the
   following design principles:

   o  Flexibility is paramount.  So is simplicity.  Applications must be
      given as many controls and as much information as they may need,
      but they must be able to ignore controls and information
      irrelevant to their operation.  This implies that the "default"
      interface must be no more complicated than BSD sockets, and must
      do something reasonable.

   o  Reception is an inherently asynchronous activity.  While the API
      is designed to be as platform-independent as possible, one key
      insight it is based on is that an Message receiver’s behavior in a
      packet-switched network is inherently asynchronous, driven by the
      receipt of packets, and that this asynchronicity must be reflected
      in the API.  The actual implementation of receive and event
      handling will need to be aligned to the method a given platform
      provides for asynchronous I/O.

   o  A new API cannot be bound to a single transport protocol and
      expect wide deployment.  As the API is transport-independent and
      may support runtime transport selection, it must impose the
      minimum possible set of constraints on its underlying transports,
      though some API features may require underlying transport features
      to work optimally.  It must be possible to implement Post over
      vanilla TCP in the present Internet architecture.

   The API we design from these principles is centered around a Carrier,
   which can be created actively via initiate() or passively via a
   listen(); the latter creates a Listener from which new Carriers can
   be accept()ed.  Messages may be created explicitly and passed to this
   Carrier, or implicitly through a simplified interface which uses
   default message properties (reliable transport without priority or
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   deadline, which guarantees ordered delivery over a single Carrier
   when the underlying transport protocol stack supports it).

   For each connection between a Local and a Remote a new Carrier is
   created and destroyed when the connection is closed.  However, a new
   Carrier may use an existing Association if present for the requested
   Local-Remote pair and permitted by the PolicyContext that can be
   provided at Carrier initiation.  Further the system-wide
   PolicyContext can contain more information that determine when to
   create or destroy Associations other than at Carrier initiation.
   E.g. an Association can be created at system start, based on the
   configured PolicyContext or also by a manual action of an single
   application, for Local-Remote pairs that are known to be likely used
   soon, and to pre-establish, e.g., cryptographic context as well as
   potentially collect current information about path capabilities.
   Every time an actual connection with a specific PSI is established
   between the Local and Remote, the Association learns new Path
   information and stores them.  This information can be used when a new
   transient is created, e.g. to decide which PSI to use (to provide the
   highest probably for a successful connection attempt) or which PSIs
   to probe for (first).  A Transient is created when an application
   actually sends a Message over a Carrier.  As further explained below
   this step can actually create multiple transients for probing or
   assign a new transient to an already active PSI, e.g. if multi-
   streaming is provided and supported for these kind of use on both
   sides.

3.1.  Example Connection Patterns

   Here, we illustrate the usage of the API for common connection
   patterns.  Note that error handling is ignored in these illustrations
   for ease of reading.

3.1.1.  Client-Server

   Here’s an example client-server application.  The server echoes
   messages.  The client sends a message and prints what it receives.

   The client in Figure 2 connects, sends a message, and sets up a
   receiver to print messages received in response.  The carrier is
   inactive after the Initiate() call; the Send() call blocks until the
   carrier can be activated.
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   // connect to a server given a remote
   func sayHello() {

       carrier := Initiate(local, remote)

       carrier.Send([]byte("Hello!"))
       carrier.Ready(func (msg InMessage) {
           fmt.Println(string([]byte(msg))
           return false
       })
       carrier.Close()
   }

                         Figure 2: Example client

   The server in Figure 3 creates a Listener, which accepts Carriers and
   passes them to a server.  The server echos the content of each
   message it receives.

   // run a server for a specific carrier, echo all its messages
   func runMyServerOn(carrier Carrier) {
       carrier.Ready(func (msg InMessage) {
           carrier.Send(msg)
       })
   }

   // accept connections forever, spawn servers for them
   func acceptConnections() {
       listener := Listen(local)
       listener.Accept(func(carrier Carrier) bool {
           go runMyServerOn(carrier)
           return true
       })
   }

                         Figure 3: Example server

   The Responder allows the server to be significantly simplified, as
   shown in Figure 4.

   func echo(msg InMessage, reply Sink) {
       reply.Send(msg)
   }

   Respond(local, echo)

                        Figure 4: Example responder
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3.1.2.  Client-Server with Happy Eyeballs and 0-RTT establishment

   The fundamental design of a client need not change at all for happy
   eyeballs [RFC6555] (selection of multiple potential protocol stacks
   through connection racing); this is handled by the Post Sockets
   implementation automatically.  If this connection racing is to use
   0-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client
   must mark the outgoing message as idempotent.

// connect to a server given a remote and send some 0-RTT data
func sayHelloQuickly() {

    carrier := Initiate(local, remote)

    carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, nil
, nil, nil)
    carrier.Ready(func (msg InMessage) {
        fmt.Println(string([]byte(msg)))
        return false
    })
    carrier.Close()
}

3.1.3.  Peer to Peer with Network Address Translation

   In the client-server examples shown above, the Remote given to the
   Initiate call refers to the name and port of the server to connect
   to.  This need not be the case, however; a Remote may also refer to
   an identity and a rendezvous point for rendezvous as in ICE
   [RFC5245].  Here, each peer does its own Initiate call
   simultaneously, and the result on each side is a Carrier attached to
   an appropriate Association.

3.1.4.  Multicast Receiver

   A multicast receiver is implemented using a Sink attached to a Local
   encapsulating a multicast address on which to receive multicast
   datagrams.  The following example prints messages received on the
   multicast address forever.

   func receiveMulticast() {
       sink = NewSink(local)
       sink.Ready(func (msg InMessage) {
           fmt.Println(string([]byte(msg)))
           return true
       })
   }
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3.1.5.  Association Bootstrapping

   Here, we show how Association state may be initialized without a
   carrier.  The goal is to create a long-term Association from which
   Carriers may be derived and, if possible, used immediately.  Per
   [I-D.pauly-taps-transport-security], a first step is to specify trust
   model constraints, such as pinned public keys and anchor
   certificates, which are needed to create Remote connections.

   We begin by creating shared security parameters that will be used
   later for creating a remote connection.

   // create security parameters with a set of trusted certificates
   func createParameters(trustedCerts []Certificate) Parameters {
       parameters := Parameters()
       parameters = parameters.SetTrustedCerts(trustedCerts)
       return parameters
   }

   Using these statically configured parameters, we now show how to
   create an Association between a Local and Remote using these
   parameters.

// create an Association using shared parameters
func createAssociation(local Local, remote Remote, parameters Parameters) Associ
ation {
    association := NewAssociation(local, remote, parameters)
    return association
}

   We may also create an Association with a pre-shared key configured
   out-of-band.

// create an Association using a pre-shared key
func createAssociationWithPSK(local Local, remote Remote, parameters Parameters,
 preSharedKey []byte) Association {
    association := NewAssociation(local, remote, parameters)
    association = association.SetPreSharedKey(preSharedKey)
    return association
}

   We now show how to create a Carrier from an existing, pre-configured
   Association.  This Association may or may not contain shared
   cryptographic static between the Local and Remote, depending on how
   it was configured.
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// open a connection to a server using an existing Association and send some dat
a,
// which will be sent early if possible.
func sayHelloWithAssociation(association Association) {
    carrier := association.Initiate()

    carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, nil
, nil, nil)
    carrier.Ready(func (msg InMessage) {
        fmt.Println(string([]byte(msg)))
        return false
    })
    carrier.Close()
}

3.2.  API Dynamics

   As Carriers provide the central entry point to Post, they are key to
   API dynamics.  The lifecycle of a carrier is shown in Figure 5.
   Carriers are created by active openers by calling Initiate() given a
   Local and a Remote, and by passive openers by calling Listen() given
   a Local; the .Accept() method on the listener Carrier can then be
   used to create active carriers.  By default, the underlying
   Association is automatically created and managed by the underlying
   API.  This underlying Association can be accessed by the Carrier’s
   .Association() method.  Alternately, an association can be explicitly
   created using NewAssociation(), and a Carrier on the association may
   be accessed or initiated by calling the association’s .Initiate()
   method.

   Once a Carrier has been created (via Initiate(),
   Association.Initiate(), NewSource(), NewSink(), or
   Listen()/Accept()), it may be used to send and receive Messages.  The
   existence of a Carrier does not imply the existence of an active
   Transient or associated transport-layer connection; these may be
   created when the carrier is, or may be deferred, depending on the
   network environment, configuration, and protocol stacks available.
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    Listen(local)   Initiate(local,remote)   NewSource(local,remote)
         |                     |             or NewSink(local)
     [ Carrier  ]              |                    |
     [(listener)]              +--------------------+
         |                     V
     .Accept()-----------> [Carrier] -+----------> .Close()
                            |     ^   |  close    [ Carrier  ]
                            |     |   +- event -> [ (closed) ]
                            |     |
                 .Association()  .Carriers()
                            |    .Initiate()
                            V     |
                        [Association]
                              ^
                              |
                 NewAssociation(local,remote)

               Figure 5: Carrier and Association Life Cycle

   Access to more detailed information is possible through accessors on
   Carriers and Associations, as shown in Figure 6.  The set of
   currently active Transients can be accessed through the Carrier’s
   .Transients() methods.  The active path(s) used by a Transient can be
   accessed through the Transient’s .Paths() method, and the set of all
   paths for which properties are cached by an Association can be
   accessed through the Association’s .Paths() method.  The set of
   active carriers on an association can be accessed through the
   Association’s .Carriers() method.  Access to transients and paths is
   not necessary in normal operation; these accessors are provided
   primarily for logging and debugging purposes.

             [Carrier]---.Transients()--->[Transient]
              |     ^                       |
              |     |                       |
   .Association()  .Carriers()           .Paths()
              |    .Initiate()              |
              V     |                       V
           [Association]---.Paths()------>[Path]

             Figure 6: Accessors on Carriers and Associations

   Each Carrier has a .Send() method, by which Messages can be sent with
   given properties, and a .Ready() method, which supplies a callback
   for reading Messages from the remote side. .Send() is not available
   on Sinks, and .Ready() is not available on Sources.  Carriers also
   provide .OnSent(), .OnAcked(), and .OnExpired() calls for binding
   default send event handlers to the Carrier, and .OnClosed() for
   handling passive close notifications.
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                                   +---------[incoming]-----------+
                                   |         [Message ]           V
 [outgoing] ---> .Send() --->  [Carrier] <---- .Ready() <---- [Receiver]
 [Message ]                        |
                                   +--- .OnSent()
                                   +--- .OnAcked()
                                   +--- .OnExpired()
                                   +--- .OnClosed()

            Figure 7: Sending and Receiving Messages and Events

   An application may have a global Configuation, as well as more
   specific Configurations to apply to the establishment of a given
   Association or Carrier.  These Configurations are optional arguments
   to the Association and Carrier creation calls.

   In order to initiate a connection with a remote endpoint, a user of
   Post Sockets must start from a Remote (see Section 2.4).  A Remote
   encapsulates identifying information about a remote endpoint at a
   specific level of resolution.  A new Remote can be wrapped around
   some identifying information by via the NewRemote() call.  A Remote
   has a .Resolve() method, which can be iteratively revoked to increase
   the level of resolution; a call to Resolve on a given Remote may
   result in one to many Remotes, as shown in Figure 8.  Remotes at any
   level of resolution may be passed to Post Sockets calls; each call
   will continue resolution to the point necessary to establish or
   resume a Carrier.

                             +----------------------------+
                           n |                            | 1
   NewRemote(identifiers) ---+--->[Remote] --.Resolve()---+

                 Figure 8: Recursive resolution of Remotes

   Information about the local endpoint is also necessary to establish
   an Association, whether explicitly or implicitly through the creation
   of a Carrier or Listener.  This is passed in the form of a Local (see
   Section 2.5).  A Local is created with a NewLocal() call, which takes
   a Configuration (including certificates to present and secret keys
   associated with them) and identifying information (interface(s) and
   port(s) to use).

4.  Implementation Considerations

   Here we discuss an incomplete list of API implementation
   considerations that have arisen with experimentation with prototype
   implementations of Post.
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4.1.  Protocol Stack Instance (PSI)

   A PSI encapsulates an arbitrary stack of protocols (e.g., TCP over
   IPv6, SCTP over DTLS over UDP over IPv4).  PSIs provide the bridge
   between the interface (Carrier) plus the current state (Transients)
   and the implementation of a given set of transport services
   [I-D.ietf-taps-transports].

   A given implementation makes one or more possible protocol stacks
   available to its applications.  Selection and configuration among
   multiple PSIs is based on system-level or application policies, as
   well as on network conditions in the provisioning domain in which a
   connection is made.

   +=========+    +=========+   +==========+      +==========+
   | Carrier |    | Carrier |   | Carrier  |      | Carrier  |
   +=========+    +=========+   +==========+      +==========+
        |               |              |                 |
   +=========+    +=========+   +==========+      +==========+
   |Transient|    |Transient|   |Transient |      |Transient |
   +=========+    +=========+   +==========+      +==========+
        |                  \     /                 /        \
   +=========+           +=========+      +=========+      +=========+
   |   PSI   |           |   PSI   |      |   PSI   |      |   PSI   |
   +===+-----++          +===+-----++     +===+-----++    ++-----+===+
       |TLS   |              |SCTP  |         |TLS   |    |   TLS|
       |TCP   |              |DTLS  |         |TCP   |    |   TCP|
       |IPv6  |              |UDP   |         |IPv6  |    |  IPv4|
       |802.3 |              |IPv6  |         |802.11|    |802.11|
       +------+              |802.3 |         +------+    +------+
                             +------+
   (a) Transient  (b) Carrier multiplexing   (c) Multiple candidates
    bound to PSI   over a multi-streaming     racing during session
                   transport protocol         establishment

                Figure 9: Example Protocol Stack Instances

   For example, Figure 9(a) shows a TLS over TCP stack, usable on most
   network connections.  Protocols are layered to ensure that the PSI
   provides all the transport services required by the application.  A
   single PSI may be bound to multiple Carriers, as shown in
   Figure 9(b): a multi-streaming transport protocol like QUIC or SCTP
   can support one carrier per stream.  Where multi-streaming transport
   is not available, these carriers could be serviced by different PSIs
   on different flows.  On the other hand, multiple PSIs are bound to a
   single transient during establishment, as shown in Figure 9(c).
   Here, the losing PSI in a happy-eyeballs race will be terminated, and
   the carrier will continue using the winning PSI.
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4.2.  Message Framing, Parsing, and Serialization

   While some transports expose a byte stream abstraction, most higher
   level protocols impose some structure onto that byte stream.  That
   is, the higher level protocol operates in terms of messages, protocol
   data units (PDUs), rather than using unstructured sequences of bytes,
   with each message being processed in turn.  Protocols are specified
   in terms of state machines acting on semantic messages, with parsing
   the byte stream into messages being a necessary annoyance, rather
   than a semantic concern.  Accordingly, Post Sockets exposes a
   message-based API to applications as the primary abstraction.
   Protocols that deal only in byte streams, such as TCP, represent
   their data in each direction as a single, long message.  When framing
   protocols are placed on top of byte streams, the messages used in the
   API represent the framed messages within the stream.

   There are other benefits of providing a message-oriented API beyond
   framing PDUs that Post Sockets should provide when supported by the
   underlying transport.  These include:

   o  the ability to associate deadlines with messages, for transports
      that care about timing;

   o  the ability to provide control of reliability, choosing what
      messages to retransmit in the event of packet loss, and how best
      to make use of the data that arrived;

   o  the ability to manage dependencies between messages, when some
      messages may not be delivered due to either packet loss or missing
      a deadline, in particular the ability to avoid (re-)sending data
      that relies on a previous transmission that was never received.

   All require explicit message boundaries, and application-level
   framing of messages, to be effective.  Once a message is passed to
   Post Sockets, it can not be cancelled or paused, but prioritization
   as well as lifetime and retransmission management will provide the
   protocol stack with all needed information to send the messages as
   quickly as possible without blocking transmission unnecessarily.
   Post Sockets provides this by handling message, with known identity
   (sequence numbers, in the simple case), lifetimes, niceness, and
   antecedents.

   Transport protocols such as SCTP provide a message-oriented API that
   has similar features to those we describe.  Other transports, such as
   TCP, do not.  To support a message oriented API, while still being
   compatible with stream-based transport protocols, Post Sockets must
   provide APIs for parsing and serialising messages that understand the
   protocol data.  That is, we push message parsing and serialisation
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   down into the Post Sockets stack, allowing applications to send and
   receive strongly typed data objects (e.g., a receive call on an HTTP
   Message Carrier should return an object representing the HTTP
   response, with pre-parsed status code, headers, and any message body,
   rather than returning a byte array that the application has to parse
   itself).  This is backwards compatible with existing protocols and
   APIs, since the wire format of messages does not change, but gives a
   Post Sockets stack additional information to allow it to make better
   use of modern transport services.

   The Post Sockets approach is therefore to raise the semantic level of
   the transport API: applications should send and receive messages in
   the form of meaningful, strongly typed, protocol data.  Parsing and
   serialising such messages should be a re-usable function of the
   protocol stack instance not the application.  This is well-suited to
   implementation in modern systems languages, such as Swift, Go, Rust,
   or C++, but can also be implemented with some loss of type safety in
   C.

4.3.  Message Size Limitations

   Ideally, Messages can be of infinite size.  However, protocol stacks
   and protocol stack implementations may impose their own limits on
   message sizing; For example, SCTP [RFC4960] and TLS
   [I-D.ietf-tls-tls13] impose record size limitations of 64kB and 16kB,
   respectively.  Message sizes may also be limited by the available
   buffer at the receiver, since a Message must be fully assembled by
   the transport layer before it can be passed on to the application
   layer.  Since not every transport protocol stack implements the
   signaling necessary to negotiate or expose message size limitations,
   these may need to be defined out of band, and are probably best
   exposed through the Configuration.

   A truly infinite message service - e.g. large file transfer where
   both endpoints have committed persistent storage to the message - is
   probably best realized as a layer above Post Sockets, and may be
   added as a new type of Message Carrier to a future revision of this
   document.

4.4.  Back-pressure

   Regardless of how asynchronous reception is implemented, it is
   important for an application to be able to apply receiver back-
   pressure, to allow the protocol stack to perform receiver flow
   control.  Depending on how asynchronous I/O works in the platform,
   this could be implemented by having a maximum number of concurrent
   receive callbacks, or by bounding the maximum number of outstanding,
   unread bytes at any given time, for example.
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4.5.  Associations, Transients, Racing, and Rendezvous

   As the network has evolved, even the simple act of establishing a
   connection has become increasingly complex.  Clients now regularly
   race multiple connections, for example over IPv4 and IPv6, to
   determine which protocol to use.  The choice of outgoing interface
   has also become more important, with differential reachability and
   performance from multiple interfaces.  Name resolution can also give
   different outcomes depending on the interface the query was issued
   from.  Finally, but often most significantly, NAT traversal, relay
   discovery, and path state maintenance messages are an essential part
   of connection establishment, especially for peer-to-peer
   applications.

   Post Sockets accordingly breaks communication establishment down into
   multiple phases:

   o  Gathering Locals

      The set of possible Locals is gathered.  In the simple case, this
      merely enumerates the local interfaces and protocols, and
      allocates ephemeral source ports for transients.  For example, a
      system that has WiFi and Ethernet and supports IPv4 and IPv6 might
      gather four candidate locals (IPv4 on Ethernet, IPv6 on Ethernet,
      IPv4 on WiFi, and IPv6 on WiFi) that can form the source for a
      transient.

      If NAT traversal is required, the process of gathering locals
      becomes broadly equivalent to the ICE candidate gathering phase
      [RFC5245].  The endpoint determines its server reflexive locals
      (i.e., the translated address of a local, on the other side of a
      NAT) and relayed locals (e.g., via a TURN server or other relay),
      for each interface and network protocol.  These are added to the
      set of candidate locals for this association.

      Gathering locals is primarily an endpoint local operation,
      although it might involve exchanges with a STUN server to derive
      server reflexive locals, or with a TURN server or other relay to
      derive relayed locals.  It does not involve communication with the
      remote.

   o  Resolving the Remote

      The remote is typically a name that needs to be resolved into a
      set of possible addresses that can be used for communication.
      Resolving the remote is the process of recursively performing such
      name lookups, until fully resolved, to return the set of
      candidates for the remote of this association.
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      How this is done will depend on the type of the Remote, and can
      also be specific to each local.  A common case is when the Remote
      is a DNS name, in which case it is resolved to give a set of IPv4
      and IPv6 addresses representing that name.  Some types of remote
      might require more complex resolution.  Resolving the remote for a
      peer-to-peer connection might involve communication with a
      rendezvous server, which in turn contacts the peer to gain consent
      to communicate and retrieve its set of candidate locals, which are
      returned and form the candidate remote addresses for contacting
      that peer.

      Resolving the remote is _not_ a local operation.  It will involve
      a directory service, and can require communication with the remote
      to rendezvous and exchange peer addresses.  This can expose some
      or all of the candidate locals to the remote.

   o  Establishing Transients

      The set of candidate locals and the set of candidate remotes are
      paired, to derive a priority ordered set of Candidate Paths that
      can potentially be used to establish a connection.

      Then, communication is attempted over each candidate path, in
      priority order.  If there are multiple candidates with the same
      priority, then transient establishment proceeds simultaneously and
      uses the transient that wins the race to be established.
      Otherwise, transients establishment is sequential, paced at a rate
      that should not congest the network.  Depending on the chosen
      transport, this phase might involve racing TCP connections to a
      server over IPv4 and IPv6 [RFC6555], or it could involve a STUN
      exchange to establish peer-to-peer UDP connectivity [RFC5245], or
      some other means.

   o  Confirming and Maintaining Transients

      Once connectivity has been established, unused resources can be
      released and the chosen path can be confirmed.  This is primarily
      required when establishing peer-to-peer connectivity, where
      connections supporting relayed locals that were not required can
      be closed, and where an associated signalling operation might be
      needed to inform middleboxes and proxies of the chosen path.
      Keep-alive messages may also be sent, as appropriate, to ensure
      NAT and firewall state is maintained, so the transient remains
      operational.

   By encapsulating these four phases of communication establishment
   into the PSI, Post Sockets aims to simplify application development.
   It can provide reusable implementations of connection racing for TCP,
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   to enable happy eyeballs, that will be automatically used by all TCP
   clients, for example.  With appropriate callbacks to drive the
   rendezvous signalling as part of resolving the remote, we believe a
   generic ICE implementation ought also to be possible.  This procedure
   can even be repeated fully or partially during a connection to enable
   seamless hand-over and mobility within the network stack.
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Appendix A.  Open Issues

   This document is under active development; a list of current open
   issues is available at https://github.com/mami-project/draft-
   trammell-post-sockets/issues
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