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Abstract

   This document presents a new TCP loss detection algorithm called RACK
   ("Recent ACKnowledgment").  RACK uses the notion of time, instead of
   packet or sequence counts, to detect losses, for modern TCP
   implementations that can support per-packet timestamps and the
   selective acknowledgment (SACK) option.  It is intended to replace
   the conventional DUPACK threshold approach and its variants, as well
   as other nonstandard approaches.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

1.  Introduction

   This document presents a new loss detection algorithm called RACK
   ("Recent ACKnowledgment").  RACK uses the notion of time instead of
   the conventional packet or sequence counting approaches for detecting
   losses.  RACK deems a packet lost if some packet sent sufficiently
   later has been delivered.  It does this by recording packet
   transmission times and inferring losses using cumulative
   acknowledgments or selective acknowledgment (SACK) TCP options.

   In the last couple of years we have been observing several
   increasingly common loss and reordering patterns in the Internet:

   1.  Lost retransmissions.  Traffic policers [POLICER16] and burst
       losses often cause retransmissions to be lost again, severely
       increasing TCP latency.

   2.  Tail drops.  Structured request-response traffic turns more
       losses into tail drops.  In such cases, TCP is application-
       limited, so it cannot send new data to probe losses and has to
       rely on retransmission timeouts (RTOs).

   3.  Reordering.  Link layer protocols (e.g., 802.11 block ACK) or
       routers’ internal load-balancing can deliver TCP packets out of
       order.  The degree of such reordering is usually within the order
       of the path round trip time.

   Despite TCP stacks (e.g.  Linux) that implement many of the standard
   and proposed loss detection algorithms
   [RFC3517][RFC4653][RFC5827][RFC5681][RFC6675][RFC7765][FACK][THIN-
   STREAM][TLP], we’ve found that together they do not perform well.
   The main reason is that many of them are based on the classic rule of
   counting duplicate acknowledgments [RFC5681].  They can either detect
   loss quickly or accurately, but not both, especially when the sender
   is application-limited or under reordering that is unpredictable.
   And under these conditions none of them can detect lost
   retransmissions well.

   Also, these algorithms, including RFCs, rarely address the
   interactions with other algorithms.  For example, FACK may consider a
   packet is lost while RFC3517 may not.  Implementing N algorithms
   while dealing with N^2 interactions is a daunting task and error-
   prone.
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   The goal of RACK is to solve all the problems above by replacing many
   of the loss detection algorithms above with one simpler, and also
   more effective, algorithm.

2.  Overview

   The main idea behind RACK is that if a packet has been delivered out
   of order, then the packets sent chronologically before that were
   either lost or reordered.  This concept is not fundamentally
   different from [RFC5681][RFC3517][FACK].  But the key innovation in
   RACK is to use a per-packet transmission timestamp and widely
   deployed SACK options to conduct time-based inferences instead of
   inferring losses with packet or sequence counting approaches.

   Using a threshold for counting duplicate acknowledgments (i.e.,
   dupthresh) is no longer reliable because of today’s prevalent
   reordering patterns.  A common type of reordering is that the last
   "runt" packet of a window’s worth of packet bursts gets delivered
   first, then the rest arrive shortly after in order.  To handle this
   effectively, a sender would need to constantly adjust the dupthresh
   to the burst size; but this would risk increasing the frequency of
   RTOs on real losses.

   Today’s prevalent lost retransmissions also cause problems with
   packet-counting approaches [RFC5681][RFC3517][FACK], since those
   approaches depend on reasoning in sequence number space.
   Retransmissions break the direct correspondence between ordering in
   sequence space and ordering in time.  So when retransmissions are
   lost, sequence-based approaches are often unable to infer and quickly
   repair losses that can be deduced with time-based approaches.

   Instead of counting packets, RACK uses the most recently delivered
   packet’s transmission time to judge if some packets sent previous to
   that time have "expired" by passing a certain reordering settling
   window.  On each ACK, RACK marks any already-expired packets lost,
   and for any packets that have not yet expired it waits until the
   reordering window passes and then marks those lost as well.  In
   either case, RACK can repair the loss without waiting for a (long)
   RTO.  RACK can be applied to both fast recovery and timeout recovery,
   and can detect losses on both originally transmitted and
   retransmitted packets, making it a great all-weather recovery
   mechanism.

3.  Requirements

   The reader is expected to be familiar with the definitions given in
   the TCP congestion control [RFC5681] and selective acknowledgment
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   [RFC2018] RFCs.  Familiarity with the conservative SACK-based
   recovery for TCP [RFC6675] is not expected but helps.

   RACK has three requirements:

   1.  The connection MUST use selective acknowledgment (SACK) options
       [RFC2018].

   2.  For each packet sent, the sender MUST store its most recent
       transmission time with (at least) millisecond granularity.  For
       round-trip times lower than a millisecond (e.g., intra-datacenter
       communications) microsecond granularity would significantly help
       the detection latency but is not required.

   3.  For each packet sent, the sender MUST remember whether the packet
       has been retransmitted or not.

   We assume that requirement 1 implies the sender keeps a SACK
   scoreboard, which is a data structure to store selective
   acknowledgment information on a per-connection basis.  For the ease
   of explaining the algorithm, we use a pseudo-scoreboard that manages
   the data in sequence number ranges.  But the specifics of the data
   structure are left to the implementor.

   RACK does not need any change on the receiver.

4.  Definitions of variables

   A sender needs to store these new RACK variables:

   "Packet.xmit_ts" is the time of the last transmission of a data
   packet, including retransmissions, if any.  The sender needs to
   record the transmission time for each packet sent and not yet
   acknowledged.  The time MUST be stored at millisecond granularity or
   finer.

   "RACK.packet".  Among all the packets that have been either
   selectively or cummulatively acknowledged, RACK.packet is the one
   that was sent most recently (including retransmission).

   "RACK.xmit_ts" is the latest transmission timestamp of RACK.packet.

   "RACK.end_seq" is the ending TCP sequence number of RACk.packet.

   "RACK.RTT" is the associated RTT measured when RACK.xmit_ts, above,
   was changed.  It is the RTT of the most recently transmitted packet
   that has been delivered (either cumulatively acknowledged or
   selectively acknowledged) on the connection.
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   "RACK.reo_wnd" is a reordering window for the connection, computed in
   the unit of time used for recording packet transmission times.  It is
   used to defer the moment at which RACK marks a packet lost.

   "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the
   connection.

   "RACK.ack_ts" is the time when all the sequences in RACK.packet were
   selectively or cumulatively acknowledged.

   Note that the Packet.xmit_ts variable is per packet in flight.  The
   RACK.xmit_ts, RACK.RTT, RACK.reo_wnd, and RACK.min_RTT variables are
   to keep in TCP control block per connection.  RACK.packet and
   RACK.ack_ts are used as local variables in the algorithm.

5.  Algorithm Details

5.1.  Transmitting a data packet

   Upon transmitting a new packet or retransmitting an old packet,
   record the time in Packet.xmit_ts.  RACK does not care if the
   retransmission is triggered by an ACK, new application data, an RTO,
   or any other means.

5.2.  Upon receiving an ACK

   Step 1: Update RACK.min_RTT.

   Use the RTT measurements obtained in [RFC6298] or [RFC7323] to update
   the estimated minimum RTT in RACK.min_RTT.  The sender can track a
   simple global minimum of all RTT measurements from the connection, or
   a windowed min-filtered value of recent RTT measurements.  This
   document does not specify an exact approach.

   Step 2: Update RACK.reo_wnd.

   To handle the prevalent small degree of reordering, RACK.reo_wnd
   serves as an allowance for settling time before marking a packet
   lost.  By default it is 1 millisecond.  We RECOMMEND implementing the
   reordering detection in [REORDER-DETECT][RFC4737] to dynamically
   adjust the reordering window.  When the sender detects packet
   reordering RACK.reo_wnd MAY be changed to RACK.min_RTT/4.  We discuss
   more about the reordering window in the next section.

   Step 3: Advance RACK.xmit_ts and update RACK.RTT and RACK.end_seq

   Given the information provided in an ACK, each packet cumulatively
   ACKed or SACKed is marked as delivered in the scoreboard.  Among all
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   the packets newly ACKed or SACKed in the connection, record the most
   recent Packet.xmit_ts in RACK.xmit_ts if it is ahead of RACK.xmit_ts.
   Ignore the packet if any of its TCP sequences has been retransmitted
   before and either of two condition is true:

   1.  The Timestamp Echo Reply field (TSecr) of the ACK’s timestamp
       option [RFC7323], if available, indicates the ACK was not
       acknowledging the last retransmission of the packet.

   2.  The packet was last retransmitted less than RACK.min_rtt ago.
       While it is still possible the packet is spuriously retransmitted
       because of a recent RTT decrease, we believe that our experience
       suggests this is a reasonable heuristic.

   If this ACK causes a change to RACK.xmit_ts then record the RTT and
   sequence implied by this ACK:

   RACK.RTT = Now() - RACK.xmit_ts
   RACK.end_seq = Packet.end_seq

   Exit here and omit the following steps if RACK.xmit_ts has not
   changed.

   Step 4: Detect losses.

   For each packet that has not been fully SACKed, if RACK.xmit_ts is
   after Packet.xmit_ts + RACK.reo_wnd, then mark the packet (or its
   corresponding sequence range) lost in the scoreboard.  The rationale
   is that if another packet that was sent later has been delivered, and
   the reordering window or "reordering settling time" has already
   passed, the packet was likely lost.

   If a packet that was sent later has been delivered, but the
   reordering window has not passed, then it is not yet safe to deem the
   given packet lost.  Using the basic algorithm above, the sender would
   wait for the next ACK to further advance RACK.xmit_ts; but this risks
   a timeout (RTO) if no more ACKs come back (e.g, due to losses or
   application limit).  For timely loss detection, the sender MAY
   install a "reordering settling" timer set to fire at the earliest
   moment at which it is safe to conclude that some packet is lost.  The
   earliest moment is the time it takes to expire the reordering window
   of the earliest unacked packet in flight.

   This timer expiration value can be derived as follows.  As a starting
   point, we consider that the reordering window has passed if the
   RACK.packet was sent sufficiently after the packet in question, or a
   sufficient time has elapsed since the RACK.packet was S/ACKed, or
   some combination of the two.  More precisely, RACK marks a packet as
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   lost if the reordering window for a packet has elapsed through the
   sum of:

   1.  delta in transmit time between a packet and the RACK.packet

   2.  delta in time between when RACK.ack_ts and now

   So we mark a packet as lost if:

   RACK.xmit_ts > Packet.xmit_ts
           AND
   (RACK.xmit_ts - Packet.xmit_ts) + (now - RACK.ack_ts) > RACK.reo_wnd

   If we solve this second condition for "now", the moment at which we
   can declare a packet lost, then we get:

   now > Packet.xmit_ts + RACK.reo_wnd + (RACK.ack_ts - RACK.xmit_ts)

   Then (RACK.ack_ts - RACK.xmit_ts) is just the RTT of the packet we
   used to set RACK.xmit_ts, so this reduces to:

   now > Packet.xmit_ts + RACK.RTT + RACK.reo_wnd

   The following pseudocode implements the algorithm above.  When an ACK
   is received or the RACK timer expires, call RACK_detect_loss().  The
   algorithm includes an additional optimization to break timestamp ties
   by using the TCP sequence space.  The optimization is particularly
   useful to detect losses in a timely manner with TCP Segmentation
   Offload, where multiple packets in one TSO blob have identical
   timestamps.  It is also useful when the timestamp clock granularity
   is close to or longer than the actual round trip time.
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      RACK_detect_loss():
      min_timeout = 0

      For each packet, Packet, in the scoreboard:
          If Packet is already SACKed, ACKed,
             or marked lost and not yet retransmitted:
              Skip to the next packet

          If Packet.xmit_ts > RACK.xmit_ts:
              Skip to the next packet
          /*  Timestamp tie breaker */
          If Packet.xmit_ts == RACK.xmit_ts AND
             Packet.end_seq > RACK.end_seq:
              Skip to the next packet

          timeout = Packet.xmit_ts + RACK.RTT + RACK.reo_wnd + 1
          If Now() >= timeout:
              Mark Packet lost
          Else If (min_timeout == 0) or (timeout is before min_timeout):
              min_timeout = timeout

      If min_timeout != 0
          Arm a timer to call RACK_detect_loss() after min_timeout

6.  Tail Loss Probe: fast recovery on tail losses

   This section describes a supplemental algorithm, Tail Loss Probe
   (TLP), which leverages RACK to further reduce RTO recoveries.  TLP
   triggers fast recovery to quickly repair tail losses that can
   otherwise only be recoverable by RTOs.  After an original data
   transmission, TLP sends a probe data segment within one to two RTTs.
   The probe data segment can either be new, previously unsent data, or
   a retransmission.  In either case the goal is to elicit more feedback
   from the receiver, in the form of an ACK (potentially with SACK
   blocks), to allow RACK to trigger fast recovery instead of an RTO.

   An RTO occurs when the first unacknowledged sequence number is not
   acknowledged after a conservative period of time has elapsed [RFC6298
   [1]].  Common causes of RTOs include:

   1.  Tail losses at the end of an application transaction.

   2.  Lost retransmits, which can halt fast recovery if the ACK stream
       completely dries up.  For example, consider a window of three
       data packets (P1, P2, P3) that are sent; P1 and P2 are dropped.
       On receipt of a SACK for P3, RACK marks P1 and P2 as lost and
       retransmits them as R1 and R2.  Suppose R1 and R2 are lost as
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       well, so there are no more returning ACKs to detect R1 and R2 as
       lost.  Recovery stalls.

   3.  Tail losses of ACKs.

   4.  An unexpectedly long round-trip time (RTT).  This can cause ACKs
       to arrive after the RTO timer expires.  The F-RTO algorithm
       [RFC5682 [2]] is designed to detect such spurious retransmission
       timeouts and at least partially undo the consequences of such
       events (though F-RTO cannot be used in many situations).

6.1.  Tail Loss Probe: An Example

   Following is an example of TLP.  All events listed are at a TCP
   sender.

   (1) Sender transmits segments 1-10: 1, 2, 3, ..., 8, 9, 10.  There is
   no more new data to transmit.  A PTO is scheduled to fire in 2 RTTs,
   after the transmission of the 10th segment.  (2) Sender receives
   acknowledgements (ACKs) for segments 1-5; segments 6-10 are lost and
   no ACKs are received.  The sender reschedules its PTO timer relative
   to the last received ACK, which is the ACK for segment 5 in this
   case.  The sender sets the PTO interval using the calculation
   described in step (2) of the algorithm.  (3) When PTO fires, sender
   retransmits segment 10.  (4) After an RTT, a SACK for packet 10
   arrives.  The ACK also carries SACK holes for segments 6, 7, 8 and 9.
   This triggers RACK-based loss recovery.  (5) The connection enters
   fast recovery and retransmits the remaining lost segments.

6.2.  Tail Loss Probe Algorithm Details

   We define the terminology used in specifying the TLP algorithm:

   FlightSize: amount of outstanding data in the network, as defined in
   [RFC5681 [3]].

   RTO: The transport’s retransmission timeout (RTO) is based on
   measured round-trip times (RTT) between the sender and receiver, as
   specified in [RFC6298 [4]] for TCP.  PTO: Probe timeout is a timer
   event indicating that an ACK is overdue.  Its value is constrained to
   be smaller than or equal to an RTO.

   SRTT: smoothed round-trip time, computed as specified in [RFC6298
   [5]].

   Open state: the sender has so far received in-sequence ACKs with no
   SACK blocks, and no other indications (such as retransmission
   timeout) that a loss may have occurred.
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   The TLP algorithm has three phases, which we discuss in turn.

6.2.1.  Phase 1: Scheduling a loss probe

   Step 1: Check conditions for scheduling a PTO.

   A sender should schedule a PTO after transmitting new data or
   receiving an ACK if the following conditions are met:

   (a) The connection is in Open state.  (b) The connection is either
   cwnd-limited (the data in flight matches or exceeds the cwnd) or
   application-limited (there is no unsent data that the receiver window
   allows to be sent).  (c) SACK is enabled for the connection.

   (d) The most recently transmitted data was not itself a TLP probe
   (i.e. a sender MUST NOT send consecutive or back-to-back TLP probes).

   (e) TLPRtxOut is false, indicating there is no TLP retransmission
   episode in progress (see below).

   Step 2: Select the duration of the PTO.

   A sender SHOULD use the following logic to select the duration of a
   PTO:

       If an SRTT estimate is available:
            PTO = 2 * SRTT
       Else:
            PTO = initial RTO of 1 sec
       If FlightSize == 1:
            PTO = max(PTO, 1.5 * SRTT + WCDelAckT)
            PTO = max(10ms, PTO)
            PTO = min(RTO, PTO)

   Aiming for a PTO value of 2*SRTT allows a sender to wait long enough
   to know that an ACK is overdue.  Under normal circumstances, i.e. no
   losses, an ACK typically arrives in one SRTT.  But choosing PTO to be
   exactly an SRTT is likely to generate spurious probes given that
   network delay variance and even end-system timings can easily push an
   ACK to be above an SRTT.  We chose PTO to be the next integral
   multiple of SRTT.  Similarly, current end-system processing latencies
   and timer granularities can easily push an ACK beyond 10ms, so
   senders SHOULD use a minimum PTO value of 10ms.  If RTO is smaller
   than the computed value for PTO, then a probe is scheduled to be sent
   at the RTO time.

   WCDelAckT stands for worst case delayed ACK timer.  When FlightSize
   is 1, PTO is inflated additionally by WCDelAckT time to compensate
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   for a potential long delayed ACK timer at the receiver.  The
   RECOMMENDED value for WCDelAckT is 200ms, or the delayed ACK interval
   value explicitly negotiated by the sender and receiver, if one is
   available.

6.2.2.  Phase 2: Sending a loss probe

   When the PTO fires, transmit a probe data segment:

       If a previously unsent segment exists AND
          the receive window allows new data to be sent:
           Transmit that new segment
           FlightSize += SMSS
           The cwnd remains unchanged
           Record Packet.xmit_ts
       Else:
           Retransmit the last segment
           The cwnd remains unchanged

6.2.3.  Phase 3: ACK processing

   On each incoming ACK, the sender should ancel any existing loss probe
   timer.  The timer will be re-scheduled if appropriate.

6.3.  TLP recovery detection

   If the only loss in an outstanding window of data was the last
   segment, then a TLP loss probe retransmission of that data segment
   might repair the loss.  TLP loss detection examines ACKs to detect
   when the probe might have repaired a loss, and thus allows congestion
   control to properly reduce the congestion window (cwnd) [RFC5681
   [6]].

   Consider a TLP retransmission episode where a sender retransmits a
   tail packet in a flight.  The TLP retransmission episode ends when
   the sender receives an ACK with a SEG.ACK above the SND.NXT at the
   time the episode started.  During the TLP retransmission episode the
   sender checks for a duplicate ACK or D-SACK indicating that both the
   original segment and TLP retransmission arrived at the receiver,
   meaning there was no loss that needed repairing.  If the TLP sender
   does not receive such an indication before the end of the TLP
   retransmission episode, then it MUST estimate that either the
   original data segment or the TLP retransmission were lost, and
   congestion control MUST react appropriately to that loss as it would
   any other loss.

   Since a significant fraction of the hosts that support SACK do not
   support duplicate selective acknowledgments (D-SACKs) [RFC2883 [7]]
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   the TLP algorithm for detecting such lost segments relies only on
   basicRFC 2018 [8] SACK support [RFC2018 [9]].

   Definitions of variables

   TLPRtxOut: a boolean indicating whether there is an unacknowledged
   TLP retransmission.

   TLPHighRxt: the value of SND.NXT at the time of sending a TLP
   retransmission.

6.3.1.  Initializing and resetting state

   When a connection is created, or suffers a retransmission timeout, or
   enters fast recovery, it should reset TLPRtxOut to false

6.3.2.  Recording loss probe states

   Senders must only send a TLP loss probe retransmission if TLPRtxOut
   is false.  This ensures that at any given time a connection has at
   most one outstanding TLP retransmission.  This allows the sender to
   use the algorithm described in this section to estimate whether any
   data segments were lost.

   Note that this condition only restricts TLP loss probes that are
   retransmissions.  There may be an arbitrary number of outstanding
   unacknowledged TLP loss probes that consist of new, previously-unsent
   data, since the retransmission timeout and fast recovery algorithms
   are sufficient to detect losses of such probe segments.

   Upon sending a TLP probe that is a retransmission, the sender set
   TLPRtxOut to true and TLPHighRxt to SND.NXT

   Detecting recoveries done by loss probes

   Step 1: Track ACKs indicating receipt of original and retransmitted
   segments

   A sender considers both the original segment and TLP probe
   retransmission segment as acknowledged if either (i) or (ii) are
   true:

   (i) This is a duplicate acknowledgment (as defined in [RFC5681 [10]],
   section 2), and all of the following conditions are met:

   (a) TLPRtxOut is true

   (b) SEG.ACK == TLPHighRxt

Cheng, et al.              Expires May 4, 2017                 [Page 12]



Internet-Draft                    RACK                      October 2016

   (c) SEG.ACK == SND.UNA

   (d) the segment contains no SACK blocks for sequence ranges above
   TLPHighRxt

   (e) the segment contains no data

   (f) the segment is not a window update

   (ii) This is an ACK acknowledging a sequence number at or above
   TLPHighRxt and it contains a D-SACK; i.e. all of the following
   conditions are met:

   (a) TLPRtxOut is true

   (b) SEG.ACK >= TLPHighRxt and

   (c) the ACK contains a D-SACK block

   If either conditions (i) or (ii) are met, then the sender estimates
   that the receiver received both the original data segment and the TLP
   probe retransmission, and so the sender considers the TLP episode to
   be done, and records that fact by setting TLPRtxOut to false.

   Step 2: Mark the end of a TLP retransmission episode and detect
   losses

   If the sender receives a cumulative ACK for data beyond the TLP loss
   probe retransmission then, in the absence of reordering on the return
   path of ACKs, it should have received any ACKs for the original
   segment and TLP probe retransmission segment.  At that time, if the
   TLPRtxOut flag is still true and thus indicates that the TLP probe
   retransmission remains unacknowledged, then the sender should presume
   that at least one of its data segments was lost, so it SHOULD invoke
   a congestion control response equivalent to the response to any other
   loss.

   More precisely, on each ACK, after executing step (5a) the sender
   SHOULD reset the TLPRtxOut to false, and invoke the congestion
   control about the loss event that TLP has successfully repaired.

7.  RACK and TLP discussions

7.1.  Advantages

   The biggest advantage of RACK is that every data packet, whether it
   is an original data transmission or a retransmission, can be used to
   detect losses of the packets sent prior to it.
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   Example: tail drop.  Consider a sender that transmits a window of
   three data packets (P1, P2, P3), and P1 and P3 are lost.  Suppose the
   transmission of each packet is at least RACK.reo_wnd (1 millisecond
   by default) after the transmission of the previous packet.  RACK will
   mark P1 as lost when the SACK of P2 is received, and this will
   trigger the retransmission of P1 as R1.  When R1 is cumulatively
   acknowledged, RACK will mark P3 as lost and the sender will
   retransmit P3 as R3.  This example illustrates how RACK is able to
   repair certain drops at the tail of a transaction without any timer.
   Notice that neither the conventional duplicate ACK threshold
   [RFC5681], nor [RFC6675], nor the Forward Acknowledgment [FACK]
   algorithm can detect such losses, because of the required packet or
   sequence count.

   Example: lost retransmit.  Consider a window of three data packets
   (P1, P2, P3) that are sent; P1 and P2 are dropped.  Suppose the
   transmission of each packet is at least RACK.reo_wnd (1 millisecond
   by default) after the transmission of the previous packet.  When P3
   is SACKed, RACK will mark P1 and P2 lost and they will be
   retransmitted as R1 and R2.  Suppose R1 is lost again (as a tail
   drop) but R2 is SACKed; RACK will mark R1 lost for retransmission
   again.  Again, neither the conventional three duplicate ACK threshold
   approach, nor [RFC6675], nor the Forward Acknowledgment [FACK]
   algorithm can detect such losses.  And such a lost retransmission is
   very common when TCP is being rate-limited, particularly by token
   bucket policers with large bucket depth and low rate limit.
   Retransmissions are often lost repeatedly because standard congestion
   control requires multiple round trips to reduce the rate below the
   policed rate.

   Example: (small) degree of reordering.  Consider a common reordering
   event: a window of packets are sent as (P1, P2, P3).  P1 and P2 carry
   a full payload of MSS octets, but P3 has only a 1-octet payload due
   to application-limited behavior.  Suppose the sender has detected
   reordering previously (e.g., by implementing the algorithm in
   [REORDER-DETECT]) and thus RACK.reo_wnd is min_RTT/4.  Now P3 is
   reordered and delivered first, before P1 and P2.  As long as P1 and
   P2 are delivered within min_RTT/4, RACK will not consider P1 and P2
   lost.  But if P1 and P2 are delivered outside the reordering window,
   then RACK will still falsely mark P1 and P2 lost.  We discuss how to
   reduce the false positives in the end of this section.

   The examples above show that RACK is particularly useful when the
   sender is limited by the application, which is common for
   interactive, request/response traffic.  Similarly, RACK still works
   when the sender is limited by the receive window, which is common for
   applications that use the receive window to throttle the sender.

Cheng, et al.              Expires May 4, 2017                 [Page 14]



Internet-Draft                    RACK                      October 2016

   For some implementations (e.g., Linux), RACK works quite efficiently
   with TCP Segmentation Offload (TSO).  RACK always marks the entire
   TSO blob lost because the packets in the same TSO blob have the same
   transmission timestamp.  By contrast, the counting based algorithms
   (e.g., [RFC3517][RFC5681]) may mark only a subset of packets in the
   TSO blob lost, forcing the stack to perform expensive fragmentation
   of the TSO blob, or to selectively tag individual packets lost in the
   scoreboard.

7.2.  Disadvantages

   RACK requires the sender to record the transmission time of each
   packet sent at a clock granularity of one millisecond or finer.  TCP
   implementations that record this already for RTT estimation do not
   require any new per-packet state.  But implementations that are not
   yet recording packet transmission times will need to add per-packet
   internal state (commonly either 4 or 8 octets per packet) to track
   transmission times.  In contrast, the conventional approach requires
   one variable to track number of duplicate ACK threshold.

7.3.  Adjusting the reordering window

   RACK uses a reordering window of min_rtt / 4.  It uses the minimum
   RTT to accommodate reordering introduced by packets traversing
   slightly different paths (e.g., router-based parallelism schemes) or
   out-of-order deliveries in the lower link layer (e.g., wireless links
   using link-layer retransmission).  Alternatively, RACK can use the
   smoothed RTT used in RTT estimation [RFC6298].  However, smoothed RTT
   can be significantly inflated by orders of magnitude due to
   congestion and buffer-bloat, which would result in an overly
   conservative reordering window and slow loss detection.  Furthermore,
   RACK uses a quarter of minimum RTT because Linux TCP uses the same
   factor in its implementation to delay Early Retransmit [RFC5827] to
   reduce spurious loss detections in the presence of reordering, and
   experience shows that this seems to work reasonably well.

   One potential improvement is to further adapt the reordering window
   by measuring the degree of reordering in time, instead of packet
   distances.  But that requires storing the delivery timestamp of each
   packet.  Some scoreboard implementations currently merge SACKed
   packets together to support TSO (TCP Segmentation Offload) for faster
   scoreboard indexing.  Supporting per-packet delivery timestamps is
   difficult in such implementations.  However, we acknowledge that the
   current metric can be improved by further research.
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7.4.  Relationships with other loss recovery algorithms

   The primary motivation of RACK is to ultimately provide a simple and
   general replacement for some of the standard loss recovery algorithms
   [RFC5681][RFC6675][RFC5827][RFC4653] and nonstandard ones
   [FACK][THIN-STREAM].  While RACK can be a supplemental loss detection
   on top of these algorithms, this is not necessary, because the RACK
   implicitly subsumes most of them.

   [RFC5827][RFC4653][THIN-STREAM] dynamically adjusts the duplicate ACK
   threshold based on the current or previous flight sizes.  RACK takes
   a different approach, by using only one ACK event and a reordering
   window.  RACK can be seen as an extended Early Retransmit [RFC5827]
   without a FlightSize limit but with an additional reordering window.
   [FACK] considers an original packet to be lost when its sequence
   range is sufficiently far below the highest SACKed sequence.  In some
   sense RACK can be seen as a generalized form of FACK that operates in
   time space instead of sequence space, enabling it to better handle
   reordering, application-limited traffic, and lost retransmissions.

   Nevertheless RACK is still an experimental algorithm.  Since the
   oldest loss detection algorithm, the 3 duplicate ACK threshold
   [RFC5681], has been standardized and widely deployed, we RECOMMEND
   TCP implementations use both RACK and the algorithm specified in
   Section 3.2 in [RFC5681] for compatibility.

   RACK is compatible with and does not interfere with the the standard
   RTO [RFC6298], RTO-restart [RFC7765], F-RTO [RFC5682] and Eifel
   algorithms [RFC3522].  This is because RACK only detects loss by
   using ACK events.  It neither changes the timer calculation nor
   detects spurious timeouts.

   Furthermore, RACK naturally works well with Tail Loss Probe [TLP]
   because a tail loss probe solicit seither an ACK or SACK, which can
   be used by RACK to detect more losses.  RACK can be used to relax
   TLP’s requirement for using FACK and retransmitting the the highest-
   sequenced packet, because RACK is agnostic to packet sequence
   numbers, and uses transmission time instead.  Thus TLP can be
   modified to retransmit the first unacknowledged packet, which can
   improve application latency.

7.5.  Interaction with congestion control

   RACK intentionally decouples loss detection from congestion control.
   RACK only detects losses; it does not modify the congestion control
   algorithm [RFC5681][RFC6937].  However, RACK may detect losses
   earlier or later than the conventional duplicate ACK threshold
   approach does.  A packet marked lost by RACK SHOULD NOT be
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   retransmitted until congestion control deems this appropriate (e.g.
   using [RFC6937]).

   RACK is applicable for both fast recovery and recovery after a
   retransmission timeout (RTO) in [RFC5681].  The distinction between
   fast recovery or RTO recovery is not necessary because RACK is purely
   based on the transmission time order of packets.  When a packet
   retransmitted by RTO is acknowledged, RACK will mark any unacked
   packet sent sufficiently prior to the RTO as lost, because at least
   one RTT has elapsed since these packets were sent.

7.6.  TLP recovery detection with delayed ACKs

   Delayed ACKs complicate the detection of reparies done by TLP, since
   with a delayed ACK the sender receives one fewer ACK than would
   normally be expected.  To mitigate this complication, before sending
   a TLP loss probe retransmission, the sender should attempt to wait
   long enough that the receiver has sent any delayed ACKs that it is
   withholding.  The sender algorithm described above features such a
   delay, in the form of WCDelAckT.  Furthermore, if the receiver
   supports duplicate selective acknowledgments (D-SACKs) [RFC2883] then
   in the case of a delayed ACK the sender’s TLP loss detection
   algorithm (in step (4)(a)(ii), above) can use the D-SACK information
   to infer that the original and TLP retransmission both arrived at the
   receiver.

   If there is ACK loss or a delayed ACK without a D-SACK, then this
   algorithm is conservative, because the sender will reduce cwnd when
   in fact there was no packet loss.  In practice this is acceptable,
   and potentially even desirable: if there is reverse path congestion
   then reducing cwnd is prudent.

   However, in practice sending a single byte of data turned out to be
   problematic to implement and more fragile than necessary.  Instead we
   use a full segment to probe but have to add complexity to compensate
   for the probe itself masking losses.

7.7.  RACK for other transport protocols

   RACK can be implemented in other transport protocols.  The algorithm
   can skip step 3 and simplify if the protocol can support unique
   transmission or packet identifier (e.g.  TCP echo options).  For
   example, the QUIC protocol implements RACK [QUIC-LR] .
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8.  Experiments and Performance Evaluations

   RACK and TLP have been deployed at Google including the connections
   to the users in the Internet and internally.  We conducted an
   performance evaluation experiment on RACK and TLP on a small set of
   Google Web servers in western-europe that serve most European and
   some African countries.  The length of the experiments was five days
   (one weekend plus 3 weekdays) in October 2016, where the servers were
   divided evenly into three groups.

   Group 1 (control): RACK off, TLP off

   Group 2: RACK on, TLP off

   Group 3: RACK on, TLP on

   All groups use Linux using the Cubic congestion control with an
   initial window of 10 packets and fq/pacing qdisc.  In term of
   specific recovery features, all of them enable RFC3517 (Conservative
   SACK-based recovery) and RFC5682 (F-RTO) but disable FACK because it
   is not an IETF RFC.  The goal of this setup is to compare RACK and
   TLP to RFC-based loss recoveries instead of Linux-based recoveries.

   The servers sit behind a load-balancer that distributes the
   connections evenly across the three groups.

   Each group handles similar amount of connections and send and receive
   similar amount of data.  We compare total amount of time spent in
   loss recovery across groups.  The recovery time is from when the
   recovery and retransmit starts, till the remote has acknowledge
   beyond the highest sequence at the time the recovery starts.
   Therefore the recovery includes both fast recoveries and timeout
   recoveries.  Our data shows that Group 2 recovery latency is only 2%
   lower than the Group 1 recovery latency.  But Group 3 recovery
   latency is 25% lower than Group 1 by reducing 40% of the RTOs
   triggered recoveries!  Therefore it is very important to implement
   both TLP and RACK for performance.

   We want to emphasize that the current experiment is limited in terms
   of network coverage.  The connectivities in western-europe is fairly
   good therefore loss recovery is not a performance bottleneck.  We
   plan to expand our experiments in regions with worse connectivities,
   in particular on networks with strong traffic policing.  We also plan
   to add the fourth group to disable RFC3517 to use solely RACK and TLP
   only to see if RACK plus TLP can completely replace all other SACK
   based recoveries.
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9.  Security Considerations

   RACK does not change the risk profile for TCP.

   An interesting scenario is ACK-splitting attacks [SCWA99]: for an
   MSS-size packet sent, the receiver or the attacker might send MSS
   ACKs that SACK or acknowledge one additional byte per ACK.  This
   would not fool RACK.  RACK.xmit_ts would not advance because all the
   sequences of the packet are transmitted at the same time (carry the
   same transmission timestamp).  In other words, SACKing only one byte
   of a packet or SACKing the packet in entirety have the same effect on
   RACK.

10.  IANA Considerations

   This document makes no request of IANA.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.
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