TCP Mai nt enance Worki ng G oup Y. Cheng

I nternet-Draft N. Cardwel |
I ntended status: Experinental N. Dukki pati
Expires: May 4, 2017 Googl e, Inc

Cct ober 31, 2016

RACK: a tine-based fast |oss detection algorithmfor TCP
draft-ietf-tcpmrack-01

Abst ract

Thi s docunent presents a new TCP | oss detection algorithmcalled RACK
("Recent ACKnow edgrent"). RACK uses the notion of tine, instead of
packet or sequence counts, to detect |osses, for nodern TCP

i npl ementations that can support per-packet tinestanps and the

sel ective acknow edgnent (SACK) option. It is intended to replace

t he conventional DUPACK threshol d approach and its variants, as well
as ot her nonstandard approaches.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on May 4, 2017.
Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Legal
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust

Cheng, et al. Expires May 4, 2017 [ Page 1]



Internet-Draft RACK Cct ober 2016

include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

1. Introduction

Thi s docunent presents a new | oss detection algorithmcalled RACK
("Recent ACKnow edgrent"). RACK uses the notion of tine instead of
the conventional packet or sequence counting approaches for detecting
| osses. RACK deens a packet lost if some packet sent sufficiently

| ater has been delivered. It does this by recordi ng packet

transm ssion times and inferring | osses using cumul ative

acknow edgnents or sel ective acknow edgnent (SACK) TCP options.

In the last couple of years we have been observing severa
i ncreasingly conmmon | oss and reordering patterns in the Internet:

1. Lost retransnissions. Traffic policers [POLI CERL6] and burst
| osses often cause retransmi ssions to be | ost again, severely
i ncreasing TCP | atency.

2. Tail drops. Structured request-response traffic turns nore
| osses into tail drops. In such cases, TCP is application-
limted, so it cannot send new data to probe | osses and has to
rely on retransnission tineouts (RTOs).

3. Reordering. Link |ayer protocols (e.g., 802.11 bl ock ACK) or
routers’ internal |oad-balancing can deliver TCP packets out of
order. The degree of such reordering is usually within the order
of the path round trip tine.

Despite TCP stacks (e.g. Linux) that inplenment many of the standard
and proposed | oss detection algorithns

[ RFC3517] [ RFC4653] [ RFC5827] [ RFC5681] [ RFC6675] [ RFC7765] [ FACK] [ THI N-
STREAM [ TLP], we’'ve found that together they do not performwell.

The main reason is that nany of them are based on the classic rule of
counting duplicate acknow edgrments [ RFC5681]. They can either detect
| oss quickly or accurately, but not both, especially when the sender
is application-limted or under reordering that is unpredictable.

And under these conditions none of them can detect |ost

retransm ssions well.

Al so, these algorithnms, including RFCs, rarely address the
interactions with other algorithnms. For exanple, FACK may consider a
packet is lost while RFC3517 may not. |Inplenmenting N algorithns
while dealing with N*2 interactions is a daunting task and error-
prone.

Cheng, et al. Expires May 4, 2017 [ Page 2]



Internet-Draft RACK Cct ober 2016

The goal of RACK is to solve all the problens above by replacing nany
of the | oss detection al gorithns above with one sinpler, and al so
nmore effective, algorithm

2. Overview

The main idea behind RACK is that if a packet has been delivered out
of order, then the packets sent chronologically before that were
either lost or reordered. This concept is not fundamentally
different from|[RFC5681] [ RFC3517][ FACK]. But the key innovation in
RACK is to use a per-packet transm ssion tinestanp and wi dely

depl oyed SACK options to conduct tine-based inferences instead of
inferring | osses with packet or sequence counting approaches.

Using a threshold for counting duplicate acknow edgnents (i.e.

dupt hresh) is no longer reliable because of today's preval ent
reordering patterns. A common type of reordering is that the |ast
"runt" packet of a window s worth of packet bursts gets delivered
first, then the rest arrive shortly after in order. To handle this
effectively, a sender would need to constantly adjust the dupthresh
to the burst size; but this would risk increasing the frequency of
RTCs on real |osses.

Today’ s preval ent |ost retransm ssions al so cause problens with
packet - counti ng approaches [ RFC5681] [ RFC3517] [ FACK], since those

appr oaches depend on reasoning in sequence nunber space.

Ret ransmi ssi ons break the direct correspondence between ordering in
sequence space and ordering in time. So when retransm ssions are

| ost, sequence-based approaches are often unable to infer and quickly
repair |osses that can be deduced with tine-based approaches.

I nstead of counting packets, RACK uses the nost recently delivered
packet’s transmission tinme to judge if sone packets sent previous to
that tinme have "expired" by passing a certain reordering settling

wi ndow. On each ACK, RACK narks any al ready-expired packets | ost,
and for any packets that have not yet expired it waits until the
reordering w ndow passes and then marks those lost as well. In
either case, RACK can repair the loss without waiting for a (long)
RTO. RACK can be applied to both fast recovery and timeout recovery
and can detect | osses on both originally transnmtted and
retransmtted packets, naking it a great all-weather recovery
mechani sm

3. Requirenents

The reader is expected to be famliar with the definitions given in
the TCP congestion control [RFC5681] and sel ective acknow edgnent

Cheng, et al. Expires May 4, 2017 [ Page 3]



Internet-Draft RACK Cct ober 2016

[ RFC2018] RFCs. Fanmiliarity with the conservative SACK-based
recovery for TCP [ RFC6675] is not expected but hel ps.

RACK has three requirenents:

1. The connection MJST use sel ective acknow edgnent (SACK) options
[ RFC2018] .

2. For each packet sent, the sender MJST store its nost recent
transmission tine with (at least) mllisecond granularity. For
round-trip tinmes lower than a mllisecond (e.g., intra-datacenter
conmuni cations) microsecond granularity would significantly help
the detection latency but is not required.

3. For each packet sent, the sender MJIST remenber whether the packet
has been retransnmitted or not.

We assune that requirenment 1 inplies the sender keeps a SACK
scoreboard, which is a data structure to store selective

acknow edgment i nformati on on a per-connection basis. For the ease
of explaining the algorithm we use a pseudo-scoreboard that nanages
the data in sequence nunber ranges. But the specifics of the data
structure are left to the inplenentor.

RACK does not need any change on the receiver

4. Definitions of variables
A sender needs to store these new RACK vari abl es:
"Packet.xmit_ts" is the tine of the last transmi ssion of a data
packet, including retransm ssions, if any. The sender needs to
record the transmission time for each packet sent and not yet
acknow edged. The tinme MJUST be stored at millisecond granularity or
finer.
"RACK. packet". Ampong all the packets that have been either
sel ectively or cunmul atively acknow edged, RACK. packet is the one
that was sent nost recently (including retransm ssion).
"RACK. xmt _ts" is the |atest transm ssion tinestanp of RACK packet.
"RACK. end_seq" is the ending TCP sequence number of RACK.packet.

"RACK. RTT" is the associated RTT neasured when RACK xmt _ts, above,
was changed. 1t is the RTT of the nost recently transmtted packet
that has been delivered (either cunulatively acknow edged or

sel ectively acknow edged) on the connection

Cheng, et al. Expires May 4, 2017 [ Page 4]



Internet-Draft RACK Cct ober 2016

5.

5.

5.

"RACK.reo_wnd" is a reordering wi ndow for the connection, conputed in
the unit of time used for recording packet transmission tines. It is
used to defer the nonent at which RACK marks a packet | ost.

"RACK. min_RTT" is the estimated minimumround-trip tinme (RTT) of the
connecti on.

"RACK. ack_ts" is the time when all the sequences in RACK. packet were
sel ectively or cunul atively acknow edged.

Note that the Packet.xnit ts variable is per packet in flight. The
RACK. xmit _ts, RACK. RTT, RACK.reo wnd, and RACK nmin_RTT vari ables are
to keep in TCP control block per connection. RACK. packet and

RACK. ack_ts are used as local variables in the al gorithm

Algorithm Details
1. Transnmitting a data packet

Upon transmitting a new packet or retransmitting an old packet,
record the tinme in Packet.xmt_ts. RACK does not care if the
retransm ssion is triggered by an ACK, new application data, an RTQ
or any other neans.

2. Upon receiving an ACK
Step 1: Update RACK m n_RTT.

Use the RTT neasurenents obtained in [ RFC6298] or [RFC7323] to update
the estimated minimum RTT in RACK nmin_RTT. The sender can track a
simpl e global mnimmof all RTT neasurenents fromthe connection, or
a wi ndowed mn-filtered value of recent RTT measurenents. This
docunent does not specify an exact approach

Step 2: Update RACK. reo_wnd.

To handl e the prevalent snall degree of reordering, RACK reo_wnd
serves as an allowance for settling tine before marki ng a packet

lost. By default it is 1 mllisecond. W RECOMMVEND inplenenting the
reordering detection in [ REORDER- DETECT] [ RFC4737] to dynanmically
adjust the reordering wi ndow. Wen the sender detects packet
reordering RACK reo_wnd MAY be changed to RACK. mi n_RTT/4. W discuss
nmore about the reordering window in the next section

Step 3: Advance RACK. xmit_ts and update RACK RTT and RACK. end_seq

G ven the infornmation provided in an ACK, each packet cunul atively
ACKed or SACKed is marked as delivered in the scoreboard. Anmong al

Cheng, et al. Expires May 4, 2017 [ Page 5]



Internet-Draft RACK Cct ober 2016

the packets newly ACKed or SACKed in the connection, record the nost
recent Packet.xmt ts in RACK xmit ts if it is ahead of RACK xmt _ts.
I gnore the packet if any of its TCP sequences has been retransmitted
before and either of two condition is true:

1. The Tinestanp Echo Reply field (TSecr) of the ACK s tinestanp
option [RFC7323], if available, indicates the ACK was not
acknow edgi ng the last retransm ssion of the packet.

2. The packet was last retransnitted |l ess than RACK. nmin_rtt ago.
While it is still possible the packet is spuriously retransnitted
because of a recent RTT decrease, we believe that our experience
suggests this is a reasonabl e heuristic.

If this ACK causes a change to RACK xmit_ts then record the RTT and
sequence inplied by this ACK

RACK. RTT = Now() - RACK.xmit _ts
RACK. end_seq = Packet. end_seq

Exit here and omit the following steps if RACK xmt_ts has not
changed.

Step 4. Detect |osses.

For each packet that has not been fully SACKed, if RACK xmit_ts is
after Packet.xmt_ts + RACK.reo_wnd, then mark the packet (or its
correspondi ng sequence range) lost in the scoreboard. The rationale
is that if another packet that was sent |ater has been delivered, and
the reordering window or "reordering settling tinme" has already
passed, the packet was likely |ost.

If a packet that was sent |ater has been delivered, but the
reordering w ndow has not passed, then it is not yet safe to deemthe
gi ven packet lost. Using the basic algorithm above, the sender woul d
wait for the next ACK to further advance RACK xmit _ts; but this risks
a tineout (RTO if no nore ACKs cone back (e.g, due to | osses or
application Iimt). For tinely |loss detection, the sender MAY
install a "reordering settling” timer set to fire at the earliest
monent at which it is safe to conclude that sone packet is lost. The
earliest nonent is the tinme it takes to expire the reordering w ndow
of the earliest unacked packet in flight.

This timer expiration value can be derived as follows. As a starting
poi nt, we consider that the reordering wi ndow has passed if the

RACK. packet was sent sufficiently after the packet in question, or a
sufficient tinme has el apsed since the RACK packet was S/ ACKed, or
some conbination of the two. Mre precisely, RACK narks a packet as

Cheng, et al. Expires May 4, 2017 [ Page 6]



Internet-Draft RACK Cct ober 2016

lost if the reordering wi ndow for a packet has el apsed through the
sum of :

1. deltain transmt tinme between a packet and the RACK. packet
2. delta in tine between when RACK ack _ts and now
So we mark a packet as lost if:

RACK. xmit _ts > Packet.xmt _ts
AND
(RACK. xmit _ts - Packet.xmit ts) + (now - RACK ack_ts) > RACK reo_wnd

If we solve this second condition for "now', the nonent at which we
can declare a packet |ost, then we get:

now > Packet.xmit ts + RACK. reo_wnd + (RACK. ack ts - RACK xmit _ts)

Then (RACK ack_ts - RACK. xmit_ts) is just the RTT of the packet we
used to set RACK xmit _ts, so this reduces to:

now > Packet.xmit_ts + RACK RTT + RACK.reo_wnd

The foll owi ng pseudocode inplements the algorithmabove. Wen an ACK
is received or the RACK timer expires, call RACK detect _loss(). The
al gorithmincludes an additional optimzation to break timestanmp ties
by using the TCP sequence space. The optimzation is particularly
useful to detect losses in a tinely nanner with TCP Segnentati on

O fload, where nmultiple packets in one TSO bl ob have identica
timestanps. It is also useful when the tinestanp clock granularity
is close to or longer than the actual round trip tine.

Cheng, et al. Expires May 4, 2017 [ Page 7]



Internet-Draft RACK Cct ober 2016

RACK det ect | oss():
mn_timeout = 0

For each packet, Packet, in the scoreboard:
I f Packet is already SACKed, ACKed,
or marked | ost and not yet retransmtted:
Skip to the next packet

If Packet.xmt _ts > RACK xmit _ts:
Skip to the next packet

[* Timestanp tie breaker */

If Packet.xmt ts == RACK xmit_ts AND
Packet . end_seq > RACK. end_seq:
Skip to the next packet

timeout = Packet.xmit ts + RACK RTT + RACK.reo_wnd + 1

If Now() >= tineout:
Mar k Packet | ost

Else If (min_timeout == 0) or (timeout is before min_tineout):
mn_timeout = tineout

If mntineout !'=0
Arma tinmer to call RACK detect loss() after nin_tinmeout

6. Tail Loss Probe: fast recovery on tail |osses

This section describes a supplenental algorithm Tail Loss Probe
(TLP), which | everages RACK to further reduce RTO recoveries. TLP
triggers fast recovery to quickly repair tail |osses that can

otherwi se only be recoverable by RTGs. After an original data
transm ssion, TLP sends a probe data segnent within one to two RTTs.
The probe data segment can either be new, previously unsent data, or
a retransmssion. In either case the goal is to elicit nore feedback
fromthe receiver, in the formof an ACK (potentially w th SACK

bl ocks), to allow RACK to trigger fast recovery instead of an RTO

An RTO occurs when the first unacknow edged sequence nunber is not
acknow edged after a conservative period of tinme has el apsed [ RFC6298
[1]]. Common causes of RTGs include:

1. Tail losses at the end of an application transaction.

2. Lost retransmits, which can halt fast recovery if the ACK stream
completely dries up. For exanple, consider a wi ndow of three
data packets (P1, P2, P3) that are sent; Pl and P2 are dropped.
On receipt of a SACK for P3, RACK marks P1 and P2 as |ost and
retransmts themas RL and R2. Suppose Rl and R2 are |ost as

Cheng, et al. Expires May 4, 2017 [ Page 8]



Internet-Draft RACK Cct ober 2016

well, so there are no nore returning ACKs to detect Rl and R2 as
|l ost. Recovery stalls.

3. Tail |osses of ACKs.

4. An unexpectedly long round-trip time (RTT). This can cause ACKs
to arrive after the RTO timer expires. The F-RTO al gorithm
[ RFC5682 [2]] is designed to detect such spurious retransni ssion
timeouts and at |east partially undo the consequences of such
events (though F-RTO cannot be used in nany situations).

6.1. Tail Loss Probe: An Exanple

Following is an exanple of TLP. All events listed are at a TCP
sender.

(1) Sender transmits segnents 1-10: 1, 2, 3, ..., 8, 9, 10. There is
no nore new data to transnit. A PTOis scheduled to fire in 2 RTTs,
after the transnission of the 10th segnent. (2) Sender receives
acknow edgenents (ACKs) for segments 1-5; segnents 6-10 are |ost and
no ACKs are received. The sender reschedules its PTOtiner relative
to the last received ACK, which is the ACK for segnent 5 in this
case. The sender sets the PTO interval using the calcul ation
described in step (2) of the algorithm (3) When PTO fires, sender
retransmts segnent 10. (4) After an RTT, a SACK for packet 10
arrives. The ACK al so carries SACK holes for segments 6, 7, 8 and 9.
This triggers RACK-based | oss recovery. (5) The connection enters
fast recovery and retransnits the renmining | ost segnents.

6.2. Tail Loss Probe AlgorithmDetails
We define the term nol ogy used in specifying the TLP al gorithm

Fl i ght Si ze: anpbunt of outstanding data in the network, as defined in
[ RFC5681 [3]].

RTO. The transport’s retransm ssion tinmeout (RTO is based on
measured round-trip times (RTT) between the sender and receiver, as
specified in [RFC6298 [4]] for TCP. PTO Probe timeout is a timer
event indicating that an ACK is overdue. |Its value is constrained to
be smaller than or equal to an RTO

SRTT: snoothed round-trip tine, conmputed as specified in [ RFC6298
[5]].
Open state: the sender has so far received in-sequence ACKs with no

SACK bl ocks, and no other indications (such as retransm ssion
tinmeout) that a | oss may have occurred.

Cheng, et al. Expires May 4, 2017 [ Page 9]



Internet-Draft RACK Cct ober 2016

The TLP al gorithm has three phases, which we discuss in turn
6.2.1. Phase 1: Scheduling a | oss probe
Step 1: Check conditions for scheduling a PTO

A sender should schedule a PTO after transmtting new data or
receiving an ACK if the follow ng conditions are net:

(a) The connection is in Open state. (b) The connection is either
cwnd-limted (the data in flight matches or exceeds the cwnd) or
application-limted (there is no unsent data that the receiver w ndow
allows to be sent). (c) SACK is enabled for the connection.

(d) The nmpst recently transmitted data was not itself a TLP probe
(i.e. a sender MUST NOT send consecutive or back-to-back TLP probes).

(e) TLPRtxQut is false, indicating there is no TLP retransmni ssion
epi sode in progress (see bel ow).

Step 2: Select the duration of the PTO

A sender SHOULD use the following logic to select the duration of a
PTC

If an SRTT estimate is avail abl e:
PTO = 2 * SRIT
El se:
PTO = initial RTO of 1 sec
If FlightSize == 1:
PTO = max(PTO, 1.5 * SRTT + WCDel AckT)
PTO = max(10nms, PTO
PTO = m n(RTO, PTO

Aimng for a PTO value of 2*SRTT allows a sender to wait |ong enough
to know that an ACK is overdue. Under normal circunstances, i.e. no
| osses, an ACK typically arrives in one SRTT. But choosing PTOto be
exactly an SRTT is likely to generate spurious probes given that
networ k del ay variance and even end-systemtimngs can easily push an
ACK to be above an SRTT. W chose PTO to be the next integral
multiple of SRTT. Simlarly, current end-system processing |atencies
and tiner granularities can easily push an ACK beyond 10ns, so
senders SHOULD use a mini mum PTO val ue of 10ns. |If RTOis smaller
than the conputed value for PTO then a probe is scheduled to be sent
at the RTO tine.

WCDel AckT stands for worst case delayed ACK tiner. When FlightSize
is 1, PTOis inflated additionally by WCDel AckT tinme to conpensate

Cheng, et al. Expires May 4, 2017 [ Page 10]



Internet-Draft RACK Cct ober 2016

6

6

6

for a potential |long delayed ACK tinmer at the receiver. The
RECOMVENDED val ue for WCDel AckT is 200nms, or the delayed ACK interva
val ue explicitly negotiated by the sender and receiver, if one is
avai | abl e.

2.2. Phase 2: Sending a | oss probe
When the PTO fires, transmit a probe data segnent:

If a previously unsent segnent exists AND
the receive window all ows new data to be sent:
Transmit that new segnent
Fl i ght Si ze += SMSS
The cwnd renai ns unchanged
Record Packet.xmt _ts
El se:
Retransmit the | ast segnent
The cwnd renai ns unchanged

2.3. Phase 3: ACK processing

On each inconm ng ACK, the sender should ancel any existing | oss probe
timer. The tiner will be re-scheduled if appropriate.

3. TLP recovery detection

If the only loss in an outstandi ng wi ndow of data was the | ast
segnent, then a TLP | oss probe retransm ssion of that data segnent

m ght repair the loss. TLP |oss detection exam nes ACKs to detect
when the probe night have repaired a | oss, and thus all ows congestion
control to properly reduce the congestion w ndow (cwnd) [ RFC5681

[6]].

Consi der a TLP retransm ssion epi sode where a sender retransmts a
tail packet in a flight. The TLP retransni ssion epi sode ends when
the sender receives an ACK with a SEG ACK above the SND. NXT at the
time the episode started. During the TLP retransni ssion epi sode the
sender checks for a duplicate ACK or D-SACK indicating that both the
original segnent and TLP retransm ssion arrived at the receiver
meani ng there was no | oss that needed repairing. |If the TLP sender
does not receive such an indication before the end of the TLP
retransm ssion episode, then it MJST estinate that either the
original data segment or the TLP retransnission were |ost, and
congestion control MUST react appropriately to that loss as it would
any other |oss.

Since a significant fraction of the hosts that support SACK do not
support duplicate selective acknow edgnents (D SACKs) [ RFC2883 [7]]

Cheng, et al. Expires May 4, 2017 [ Page 11]



Internet-Draft RACK Cct ober 2016

the TLP algorithm for detecting such |ost segnents relies only on
basi cRFC 2018 [ 8] SACK support [RFC2018 [9]].

Definitions of variables

TLPRt xQut: a bool ean indicating whether there is an unacknow edged
TLP retransm ssi on.

TLPH ghRxt: the value of SND.NXT at the tine of sending a TLP
retransm ssion.

6.3.1. Initializing and resetting state

When a connection is created, or suffers a retransm ssion tineout, or
enters fast recovery, it should reset TLPRtxCQut to fal se

6.3.2. Recording |oss probe states

Senders must only send a TLP | oss probe retransm ssion if TLPRt xQut
is false. This ensures that at any given tinme a connection has at
nmost one outstanding TLP retransmission. This allows the sender to
use the algorithmdescribed in this section to estimte whether any
data segnents were | ost.

Note that this condition only restricts TLP | oss probes that are
retransm ssions. There may be an arbitrary nunber of outstanding
unacknowl edged TLP | oss probes that consist of new, previously-unsent
data, since the retransmi ssion tinmout and fast recovery algorithns
are sufficient to detect |osses of such probe segnents.

Upon sending a TLP probe that is a retransnission, the sender set
TLPRt xQut to true and TLPH ghRxt to SND. NXT

Det ecting recoveries done by | oss probes

Step 1. Track ACKs indicating receipt of original and retransmtted
segnent s

A sender considers both the original segnment and TLP probe
retransm ssi on segnent as acknow edged if either (i) or (ii) are
true:

(i) This is a duplicate acknow edgnment (as defined in [ RFC5681 [10]],
section 2), and all of the followi ng conditions are net:

(a) TLPRtxQut is true

(b) SEG ACK == TLPH ghRxt

Cheng, et al. Expires May 4, 2017 [ Page 12]



Internet-Draft RACK Cct ober 2016

7

7

(c) SEG ACK == SND. UNA

(d) the segnment contains no SACK bl ocks for sequence ranges above
TLPHi ghRxt

(e) the segnment contains no data
(f) the segnment is not a w ndow update

(ii) This is an ACK acknow edgi ng a sequence nunber at or above
TLPH ghRxt and it contains a D-SACK; i.e. all of the follow ng
conditions are net:

(a) TLPRtxQut is true
(b) SEG ACK >= TLPHi ghRxt and
(c) the ACK contains a D SACK bl ock

If either conditions (i) or (ii) are nmet, then the sender estimtes
that the receiver received both the original data segnent and the TLP
probe retransm ssion, and so the sender considers the TLP episode to
be done, and records that fact by setting TLPRtxCQut to fal se.

Step 2: Mark the end of a TLP retransni ssion epi sode and detect
| osses

If the sender receives a cunulative ACK for data beyond the TLP | oss
probe retransm ssion then, in the absence of reordering on the return
path of ACKs, it should have received any ACKs for the origina
segrment and TLP probe retransm ssion segnent. At that time, if the
TLPRt xQut flag is still true and thus indicates that the TLP probe
retransm ssi on remai ns unacknow edged, then the sender should presune
that at |east one of its data segnents was lost, so it SHOULD i nvoke
a congestion control response equivalent to the response to any other
| oss.

More precisely, on each ACK, after executing step (5a) the sender

SHOULD reset the TLPRtxQut to false, and invoke the congestion

control about the | oss event that TLP has successfully repaired.
RACK and TLP di scussi ons

1. Advant ages

The bi ggest advantage of RACK is that every data packet, whether it

is an original data transm ssion or a retransm ssion, can be used to
detect | osses of the packets sent prior to it.

Cheng, et al. Expires May 4, 2017 [ Page 13]



Internet-Draft RACK Cct ober 2016

Exanpl e: tail drop. Consider a sender that transnmits a w ndow of
three data packets (P1, P2, P3), and P1 and P3 are lost. Suppose the
transm ssion of each packet is at |least RACK. reo_wnd (1 millisecond
by default) after the transm ssion of the previous packet. RACK will
mark P1 as |ost when the SACK of P2 is received, and this wll
trigger the retransmssion of P1 as RL. When Rl is cunulatively
acknow edged, RACK will mark P3 as |l ost and the sender will
retransmt P3 as R3. This exanple illustrates how RACK is able to
repair certain drops at the tail of a transaction w thout any tiner.
Notice that neither the conventional duplicate ACK threshold

[ RFC5681], nor [RFC6675], nor the Forward Acknow edgment [ FACK]

al gorithm can detect such |osses, because of the required packet or
sequence count.

Exanpl e: lost retransmit. Consider a wi ndow of three data packets
(P1, P2, P3) that are sent; P1 and P2 are dropped. Suppose the
transm ssion of each packet is at |least RACK.reo_wnd (1 nmillisecond
by default) after the transm ssion of the previous packet. Wen P3
is SACKed, RACK will mark P1 and P2 lost and they will be
retransmtted as Rl and R2. Suppose Rl is lost again (as a tai

drop) but R2 is SACKed; RACK will mark Rl |lost for retransm ssion
again. Again, neither the conventional three duplicate ACK threshold
approach, nor [RFC6675], nor the Forward Acknow edgnent [ FACK]

al gorithm can detect such losses. And such a lost retransm ssion is
very comon when TCP is being rate-limted, particularly by token
bucket policers with | arge bucket depth and lowrate limt.

Retransm ssions are often | ost repeatedly because standard congestion
control requires nultiple round trips to reduce the rate bel ow the
policed rate.

Exanpl e: (small) degree of reordering. Consider a comon reordering
event: a wi ndow of packets are sent as (Pl1, P2, P3). P1 and P2 carry
a full payl oad of MSS octets, but P3 has only a 1-octet payl oad due
to application-limted behavior. Suppose the sender has detected
reordering previously (e.g., by inplenenting the algorithmin

[ REORDER- DETECT]) and thus RACK.reo_wnd is mn_RTT/4. Now P3 is
reordered and delivered first, before P1L and P2. As long as P1 and
P2 are delivered within min RTT/4, RACK will not consider Pl and P2
lost. But if P1 and P2 are delivered outside the reordering w ndow,
then RACK will still falsely mark P1 and P2 lost. W discuss howto
reduce the false positives in the end of this section

The exanpl es above show that RACK is particularly useful when the
sender is linmted by the application, which is common for
interactive, request/response traffic. Simlarly, RACK still works
when the sender is limted by the receive window, which is conmon for
applications that use the receive windowto throttle the sender

Cheng, et al. Expires May 4, 2017 [ Page 14]



Internet-Draft RACK Cct ober 2016

For some inplenmentations (e.g., Linux), RACK works quite efficiently
with TCP Segmentation Ofload (TSO. RACK always nmarks the entire
TSO bl ob | ost because the packets in the same TSO bl ob have the sane
transm ssion tinestanp. By contrast, the counting based algorithns
(e.g., [RFC3517][ RFC5681]) may mark only a subset of packets in the
TSO bl ob lost, forcing the stack to perform expensive fragmentation
of the TSO blob, or to selectively tag individual packets lost in the
scor eboard.

7.2. Disadvant ages

RACK requires the sender to record the transmi ssion tine of each
packet sent at a clock granularity of one nmillisecond or finer. TCP
i npl ementations that record this already for RTT estimation do not
require any new per-packet state. But inplenentations that are not
yet recording packet transmission tines will need to add per-packet
internal state (commonly either 4 or 8 octets per packet) to track
transm ssion tinmes. In contrast, the conventional approach requires
one variable to track nunmber of duplicate ACK threshol d.

7.3. Adjusting the reordering w ndow

RACK uses a reordering window of min_rtt / 4. 1t uses the m ni mum
RTT to accomodate reordering introduced by packets traversing
slightly different paths (e.g., router-based parallelismschenes) or
out-of -order deliveries in the lower link layer (e.g., wireless |inks
using link-layer retransmssion). Alternatively, RACK can use the
snoot hed RTT used in RTT estimation [ RFC6298]. However, snoothed RTT
can be significantly inflated by orders of nagnitude due to
congestion and buffer-bloat, which would result in an overly
conservative reordering wi ndow and sl ow | oss detection. Furthernore,
RACK uses a quarter of m ni mum RTT because Linux TCP uses the sane
factor inits inplenentation to delay Early Retransmt [RFC5827] to
reduce spurious |oss detections in the presence of reordering, and
experience shows that this seens to work reasonably well

One potential inprovenment is to further adapt the reordering w ndow
by measuring the degree of reordering in time, instead of packet

di stances. But that requires storing the delivery tinestanp of each
packet. Sone scoreboard inplenentations currently nerge SACKed
packets together to support TSO (TCP Segnentation O fload) for faster
scoreboard i ndexi ng. Supporting per-packet delivery tinmestanps is
difficult in such inplenentations. However, we acknow edge that the
current nmetric can be inproved by further research

Cheng, et al. Expires May 4, 2017 [ Page 15]



Internet-Draft RACK Cct ober 2016

7.4. Relationships with other |oss recovery al gorithns

The primary nmotivation of RACKis to ultimately provide a sinple and
general replacenment for sone of the standard | oss recovery al gorithns
[ RFC5681] [ RFC6675] [ RFC5827] [ RFC4653] and nonst andard ones
[FACK]I[ THIN- STREAM . Wil e RACK can be a supplemental |oss detection
on top of these algorithms, this is not necessary, because the RACK
inmplicitly subsumes nost of them

[ RFC5827] [ RFC4653] [ THI N- STREAM dynani cal |y adjusts the duplicate ACK
threshol d based on the current or previous flight sizes. RACK takes
a different approach, by using only one ACK event and a reordering

wi ndow. RACK can be seen as an extended Early Retransnit [ RFC5827]
without a FlightSize limt but with an additional reordering w ndow.

[ FACK] considers an original packet to be | ost when its sequence
range is sufficiently far bel ow the hi ghest SACKed sequence. 1In sone
sense RACK can be seen as a generalized formof FACK that operates in
time space instead of sequence space, enabling it to better handle
reordering, application-limted traffic, and | ost retransni ssions.

Neverthel ess RACK is still an experinmental algorithm Since the

ol dest | oss detection algorithm the 3 duplicate ACK threshold

[ RFC5681], has been standardi zed and wi dely depl oyed, we RECOVVEND
TCP i npl enentati ons use both RACK and the algorithmspecified in
Section 3.2 in [RFC5681] for conpatibility.

RACK is conpatible with and does not interfere with the the standard
RTO [ RFC6298], RTO-restart [RFC7765], F-RTO [ RFC5682] and Eife

al gorithnms [ RFC3522]. This is because RACK only detects | oss by
usi ng ACK events. |t neither changes the tinmer cal cul ation nor
detects spurious timeouts.

Furt hermore, RACK naturally works well with Tail Loss Probe [ TLP]
because a tail |oss probe solicit seither an ACK or SACK, which can
be used by RACK to detect nore | osses. RACK can be used to rel ax
TLP s requirenent for using FACK and retransmitting the the highest-
sequenced packet, because RACK is agnostic to packet sequence
nunbers, and uses transnmission tine instead. Thus TLP can be
nmodified to retransmt the first unacknow edged packet, which can

i mprove application | atency.

7.5. Interaction with congestion contro

RACK intentionally decouples | oss detection from congestion control
RACK only detects |osses; it does not nodify the congestion contro
al gorithm [ RFC5681] [ RFC6937]. However, RACK may detect | osses
earlier or later than the conventional duplicate ACK threshold
approach does. A packet nmarked | ost by RACK SHOULD NOT be

Cheng, et al. Expires May 4, 2017 [ Page 16]



Internet-Draft RACK Cct ober 2016

retransmtted until congestion control deens this appropriate (e.g.
usi ng [ RFC6937]) .

RACK is applicable for both fast recovery and recovery after a
retransm ssion tineout (RTO in [RFC5681]. The distinction between
fast recovery or RTO recovery i s not necessary because RACK is purely
based on the transmission tinme order of packets. Wen a packet
retransmtted by RTO is acknow edged, RACK will mark any unacked
packet sent sufficiently prior to the RTO as | ost, because at | east
one RTT has el apsed since these packets were sent.

7.6. TLP recovery detection with del ayed ACKs

Del ayed ACKs conplicate the detection of reparies done by TLP, since
with a del ayed ACK t he sender receives one fewer ACK than woul d
nornmal |y be expected. To mtigate this conplication, before sending
a TLP | oss probe retransm ssion, the sender should attenpt to wait

| ong enough that the receiver has sent any delayed ACKs that it is

wi t hhol di ng. The sender al gorithm descri bed above features such a
delay, in the formof WDel AckT. Furthernore, if the receiver
supports duplicate sel ective acknow edgnents (D SACKs) [RFC2883] then
in the case of a delayed ACK the sender’s TLP | oss detection
algorithm (in step (4)(a)(ii), above) can use the D SACK i nformation
to infer that the original and TLP retransmnission both arrived at the
receiver.

If there is ACK | oss or a delayed ACK without a D SACK, then this
algorithmis conservative, because the sender will reduce cwnd when
in fact there was no packet loss. |In practice this is acceptable,
and potentially even desirable: if there is reverse path congestion
then reducing cwnd is prudent.

However, in practice sending a single byte of data turned out to be
problematic to inplenent and nore fragile than necessary. Instead we
use a full segnment to probe but have to add conplexity to conpensate
for the probe itself nasking | osses.

7.7. RACK for other transport protocols
RACK can be inplenented in other transport protocols. The algorithm
can skip step 3 and sinplify if the protocol can support unique

transm ssion or packet identifier (e.g. TCP echo options). For
exanpl e, the QU C protocol inplenents RACK [ QU C LR]

Cheng, et al. Expires May 4, 2017 [ Page 17]



Internet-Draft RACK Cct ober 2016

8.

Experiments and Performance Eval uations

RACK and TLP have been depl oyed at Googl e includi ng the connections
to the users in the Internet and internally. W conducted an
performance eval uati on experinment on RACK and TLP on a snall set of
Googl e Wb servers in western-europe that serve nost European and
some African countries. The length of the experiments was five days
(one weekend plus 3 weekdays) in Cctober 2016, where the servers were
di vided evenly into three groups.

Goup 1 (control): RACK off, TLP off
G oup 2: RACK on, TLP off
G oup 3: RACK on, TLP on

Al'l groups use Linux using the Cubic congestion control with an
initial w ndow of 10 packets and fq/pacing qdisc. In term of
specific recovery features, all of them enable RFC3517 (Conservative
SACK- based recovery) and RFC5682 (F-RTO but disable FACK because it
is not an IETF RFC. The goal of this setup is to compare RACK and
TLP to RFC-based | oss recoveries instead of Linux-based recoveries.

The servers sit behind a | oad-bal ancer that distributes the
connections evenly across the three groups.

Each group handl es sinilar ambunt of connections and send and receive
simlar anpbunt of data. W conpare total anbunt of tinme spent in

| oss recovery across groups. The recovery tine is fromwhen the
recovery and retransnit starts, till the renote has acknow edge
beyond the hi ghest sequence at the tinme the recovery starts.
Therefore the recovery includes both fast recoveries and timeout
recoveries. Qur data shows that G oup 2 recovery latency is only 2%
| ower than the Group 1 recovery latency. But G oup 3 recovery

| atency is 25% | ower than Goup 1 by reducing 40% of the RTGCs
triggered recoveries! Therefore it is very inportant to inplenent
both TLP and RACK for performance.

We want to enphasize that the current experinment is limted in terns
of network coverage. The connectivities in western-europe is fairly
good therefore | oss recovery is not a performance bottleneck. W
plan to expand our experinments in regions with worse connectivities,
in particular on networks with strong traffic policing. W also plan
to add the fourth group to disable RFC3517 to use solely RACK and TLP
only to see if RACK plus TLP can conpletely replace all other SACK
based recoveri es.

Cheng, et al. Expires May 4, 2017 [ Page 18]



Internet-Draft RACK Cct ober 2016

9.

10.

11.

12.

12.

Security Considerations
RACK does not change the risk profile for TCP.

An interesting scenario is ACK-splitting attacks [ SCWA99]: for an
MBS- si ze packet sent, the receiver or the attacker m ght send MsS
ACKs that SACK or acknow edge one additional byte per ACK. This

woul d not fool RACK. RACK xmit_ts would not advance because all the
sequences of the packet are transmitted at the same tine (carry the
same transmi ssion tinmestanp). |In other words, SACKing only one byte
of a packet or SACKing the packet in entirety have the sane effect on
RACK.

| ANA Consi derati ons
Thi s docunent nakes no request of | ANA

Note to RFC Editor: this section may be renoved on publication as an
RFC.

Acknow edgnent s

The aut hors thank Matt Mathis for his insights in FACK and M chael
Wel zI for his per-packet tiner idea that inspired this work. FEric
Durmazet, Randy Stewart, Van Jacobson, lan Swett, and Jana |yengar
contributed to the algorithmand the inplenmentations in Linux,
FreeBSD and QUI C

Ref er ences
1. Nornmtive References

[ RFC793] Postel, J., "Transm ssion Control Protocol", Septenber
1981.

[ RFC2018] WMathis, M and J. Mahdavi, "TCP Sel ective Acknow edgnent
Options", RFC 2018, Cctober 1996.

[ RFC6937] Mathis, M, Dukkipati, N, and Y. Cheng, "Proportional
Rat e Reduction for TCP', My 2013.

[RFCA737] Morton, A, G avattone, L., Ramachandran, G, Shal unov,
S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
Novernber 2006.

Cheng, et al. Expires May 4, 2017 [ Page 19]



Internet-Draft RACK Cct ober 2016

[ RFC6675] Blanton, E., Allman, M, Wang, L., Jarvinen, |., Kojo, M,
and Y. Nishida, "A Conservative Loss Recovery Algorithm
Based on Sel ective Acknow edgnent (SACK) for TCP",
RFC 6675, August 2012.

[ RFC6298] Paxson, V., Allman, M, Chu, J., and M Sargent,
"Computing TCP's Retransmission Tinmer", RFC 6298, June
2011.

[ RFC5827] A lman, M, Ayesta, U, Wang, L., Blanton, J., and P.
Hurtig, "Early Retransnit for TCP and Stream Control
Transm ssion Protocol (SCTP)", RFC 5827, April 2010.

[ RFC5682] Sarolahti, P., Kojo, M, Yamanoto, K, and M Hata,
"Forward RTO Recovery (F-RTO): An Algorithmfor Detecting
Spurious Retransmni ssion Tinmeouts with TCP", RFC 5682,
Sept enber 2009.

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", RFC 2119, Mrch 1997.

[ RFC5681] Al lman, M, Paxson, V., and E. Blanton, "TCP Congestion
Control", RFC 5681, Septenber 2009.

[ RFC2883] Floyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenent (SACK) Option
for TCP', RFC 2883, July 2000.

[ RFC7323] Borman, D., Braden, B., Jacobson, V., and R
Schef f enegger, "TCP Extensions for Hi gh Perfornance",
Sept enber 2014.

12. 2. I nformati ve References

[ FACK] Mathis, M and M Janshid, "Forward acknow edgenent:
refining TCP congestion control", ACM SI GCOW Conput er
Conmruni cati on Revi ew, Vol ume 26, |Issue 4, Cct. 1996. |,
1996.

[ TLP] Dukki pati, N., Cardwell, N, Cheng, Y., and M Mathis,
"Tail Loss Probe (TLP): An Algorithmfor Fast Recovery of
Tai|l Drops", draft-dukkipati-tcpmtcp-loss-probe-01 (work
in progress), August 2013.

[RFC7765] Hurtig, P., Brunstrom A., Petlund, A, and M Wl zl, "TCP
and SCTP RTO Restart", February 2016.

Cheng, et al. Expires May 4, 2017 [ Page 20]



Internet-Draft

RACK Cct ober 2016

[ REORDER- DETECT]

[ QU G LR]

Zi mrer mann, A., Schulte, L., WIff, C, and A Hannemann
"Detection and Quantification of Packet Reordering wth
TCP", draft-zi nmermann-tcpmreordering-detection-02 (work
in progress), Novenber 2014.

lyengar, J. and |I. Swett, "QUI C Loss Recovery And
Congestion Control", draft-tsvwg-quic-loss-recovery-01
(work in progress), June 2016

[ THI N- STREAM

[ SCWA99]

[ POLI CER16]

12. 3.
[1]
[2]
[ 3]
[4]
[5]
[ 6]
[7]
[ 8]
[ 9]

URl s
htt ps
htt ps
htt ps
htt ps
htt ps
htt ps
htt ps

htt ps

Petlund, A., Evensen, K., Giwodz, C, and P. Hal vorsen,
"TCP enhancenents for interactive thin-stream
appl i cations", NOSSDAV , 2008.

Savage, S., Cardwell, N, Wtherall, D., and T. Anderson
"TCP Congestion Control Wth a M sbhehavi ng Receiver", ACM
Conput er Conmuni cation Review, 29(5) , 1999.

Fl ach, T., Papageorge, P., Terzis, A, Pedrosa, L., Cheng,
Y., Karim T., Katz-Bassett, E., and R Govindan, "An

Anal ysis of Traffic Policing in the Wb", ACM SI GCOW ,
2016.

://tools.ietf.org/htm/rfc6298
://tools.ietf.org/htm/rfc5682
://tools.ietf.org/htm/rfc5681
://tools.ietf.org/htm/rfc6298
://tools.ietf.org/htm/rfc6298
://tools.ietf.org/htm/rfc5681
://tools.ietf.org/htm/rfc2883

://tools.ietf.org/htm /rfc2018

https://tools.ietf.org/htm /rfc2018

[10] https://tools.ietf.org/htm/rfc5681

Cheng,

et al.

Expires May 4, 2017 [ Page 21]



Internet-Draft RACK Cct ober 2016

Aut hors’ Addr esses

Yuchung Cheng

Googl e, Inc

1600 Anphitheat er Parkway
Mountain View, California 94043
USA

Emai | : ycheng@oogl e. com

Neal Cardwel |

Googl e, Inc

76 Ni nth Avenue
New York, NY 10011
USA

Emai | : ncardwel | @oogl e. com
Nandi t a Dukki pati

Googl e, Inc

1600 Anphitheat er Parkway
Mountain View, California 94043
USA

Emai | : nandi t ad@oogl e. com

Cheng, et al. Expires May 4, 2017 [ Page 22]



