
TCP Maintenance Working Group Y. Cheng
Internet-Draft N. Cardwell
Intended status: Experimental N. Dukkipati
Expires: May 4, 2017 Google, Inc
 October 31, 2016

 RACK: a time-based fast loss detection algorithm for TCP
 draft-ietf-tcpm-rack-01

Abstract

 This document presents a new TCP loss detection algorithm called RACK
 ("Recent ACKnowledgment"). RACK uses the notion of time, instead of
 packet or sequence counts, to detect losses, for modern TCP
 implementations that can support per-packet timestamps and the
 selective acknowledgment (SACK) option. It is intended to replace
 the conventional DUPACK threshold approach and its variants, as well
 as other nonstandard approaches.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Cheng, et al. Expires May 4, 2017 [Page 1]

Internet-Draft RACK October 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 This document presents a new loss detection algorithm called RACK
 ("Recent ACKnowledgment"). RACK uses the notion of time instead of
 the conventional packet or sequence counting approaches for detecting
 losses. RACK deems a packet lost if some packet sent sufficiently
 later has been delivered. It does this by recording packet
 transmission times and inferring losses using cumulative
 acknowledgments or selective acknowledgment (SACK) TCP options.

 In the last couple of years we have been observing several
 increasingly common loss and reordering patterns in the Internet:

 1. Lost retransmissions. Traffic policers [POLICER16] and burst
 losses often cause retransmissions to be lost again, severely
 increasing TCP latency.

 2. Tail drops. Structured request-response traffic turns more
 losses into tail drops. In such cases, TCP is application-
 limited, so it cannot send new data to probe losses and has to
 rely on retransmission timeouts (RTOs).

 3. Reordering. Link layer protocols (e.g., 802.11 block ACK) or
 routers’ internal load-balancing can deliver TCP packets out of
 order. The degree of such reordering is usually within the order
 of the path round trip time.

 Despite TCP stacks (e.g. Linux) that implement many of the standard
 and proposed loss detection algorithms
 [RFC3517][RFC4653][RFC5827][RFC5681][RFC6675][RFC7765][FACK][THIN-
 STREAM][TLP], we’ve found that together they do not perform well.
 The main reason is that many of them are based on the classic rule of
 counting duplicate acknowledgments [RFC5681]. They can either detect
 loss quickly or accurately, but not both, especially when the sender
 is application-limited or under reordering that is unpredictable.
 And under these conditions none of them can detect lost
 retransmissions well.

 Also, these algorithms, including RFCs, rarely address the
 interactions with other algorithms. For example, FACK may consider a
 packet is lost while RFC3517 may not. Implementing N algorithms
 while dealing with N^2 interactions is a daunting task and error-
 prone.

Cheng, et al. Expires May 4, 2017 [Page 2]

Internet-Draft RACK October 2016

 The goal of RACK is to solve all the problems above by replacing many
 of the loss detection algorithms above with one simpler, and also
 more effective, algorithm.

2. Overview

 The main idea behind RACK is that if a packet has been delivered out
 of order, then the packets sent chronologically before that were
 either lost or reordered. This concept is not fundamentally
 different from [RFC5681][RFC3517][FACK]. But the key innovation in
 RACK is to use a per-packet transmission timestamp and widely
 deployed SACK options to conduct time-based inferences instead of
 inferring losses with packet or sequence counting approaches.

 Using a threshold for counting duplicate acknowledgments (i.e.,
 dupthresh) is no longer reliable because of today’s prevalent
 reordering patterns. A common type of reordering is that the last
 "runt" packet of a window’s worth of packet bursts gets delivered
 first, then the rest arrive shortly after in order. To handle this
 effectively, a sender would need to constantly adjust the dupthresh
 to the burst size; but this would risk increasing the frequency of
 RTOs on real losses.

 Today’s prevalent lost retransmissions also cause problems with
 packet-counting approaches [RFC5681][RFC3517][FACK], since those
 approaches depend on reasoning in sequence number space.
 Retransmissions break the direct correspondence between ordering in
 sequence space and ordering in time. So when retransmissions are
 lost, sequence-based approaches are often unable to infer and quickly
 repair losses that can be deduced with time-based approaches.

 Instead of counting packets, RACK uses the most recently delivered
 packet’s transmission time to judge if some packets sent previous to
 that time have "expired" by passing a certain reordering settling
 window. On each ACK, RACK marks any already-expired packets lost,
 and for any packets that have not yet expired it waits until the
 reordering window passes and then marks those lost as well. In
 either case, RACK can repair the loss without waiting for a (long)
 RTO. RACK can be applied to both fast recovery and timeout recovery,
 and can detect losses on both originally transmitted and
 retransmitted packets, making it a great all-weather recovery
 mechanism.

3. Requirements

 The reader is expected to be familiar with the definitions given in
 the TCP congestion control [RFC5681] and selective acknowledgment

Cheng, et al. Expires May 4, 2017 [Page 3]

Internet-Draft RACK October 2016

 [RFC2018] RFCs. Familiarity with the conservative SACK-based
 recovery for TCP [RFC6675] is not expected but helps.

 RACK has three requirements:

 1. The connection MUST use selective acknowledgment (SACK) options
 [RFC2018].

 2. For each packet sent, the sender MUST store its most recent
 transmission time with (at least) millisecond granularity. For
 round-trip times lower than a millisecond (e.g., intra-datacenter
 communications) microsecond granularity would significantly help
 the detection latency but is not required.

 3. For each packet sent, the sender MUST remember whether the packet
 has been retransmitted or not.

 We assume that requirement 1 implies the sender keeps a SACK
 scoreboard, which is a data structure to store selective
 acknowledgment information on a per-connection basis. For the ease
 of explaining the algorithm, we use a pseudo-scoreboard that manages
 the data in sequence number ranges. But the specifics of the data
 structure are left to the implementor.

 RACK does not need any change on the receiver.

4. Definitions of variables

 A sender needs to store these new RACK variables:

 "Packet.xmit_ts" is the time of the last transmission of a data
 packet, including retransmissions, if any. The sender needs to
 record the transmission time for each packet sent and not yet
 acknowledged. The time MUST be stored at millisecond granularity or
 finer.

 "RACK.packet". Among all the packets that have been either
 selectively or cummulatively acknowledged, RACK.packet is the one
 that was sent most recently (including retransmission).

 "RACK.xmit_ts" is the latest transmission timestamp of RACK.packet.

 "RACK.end_seq" is the ending TCP sequence number of RACk.packet.

 "RACK.RTT" is the associated RTT measured when RACK.xmit_ts, above,
 was changed. It is the RTT of the most recently transmitted packet
 that has been delivered (either cumulatively acknowledged or
 selectively acknowledged) on the connection.

Cheng, et al. Expires May 4, 2017 [Page 4]

Internet-Draft RACK October 2016

 "RACK.reo_wnd" is a reordering window for the connection, computed in
 the unit of time used for recording packet transmission times. It is
 used to defer the moment at which RACK marks a packet lost.

 "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the
 connection.

 "RACK.ack_ts" is the time when all the sequences in RACK.packet were
 selectively or cumulatively acknowledged.

 Note that the Packet.xmit_ts variable is per packet in flight. The
 RACK.xmit_ts, RACK.RTT, RACK.reo_wnd, and RACK.min_RTT variables are
 to keep in TCP control block per connection. RACK.packet and
 RACK.ack_ts are used as local variables in the algorithm.

5. Algorithm Details

5.1. Transmitting a data packet

 Upon transmitting a new packet or retransmitting an old packet,
 record the time in Packet.xmit_ts. RACK does not care if the
 retransmission is triggered by an ACK, new application data, an RTO,
 or any other means.

5.2. Upon receiving an ACK

 Step 1: Update RACK.min_RTT.

 Use the RTT measurements obtained in [RFC6298] or [RFC7323] to update
 the estimated minimum RTT in RACK.min_RTT. The sender can track a
 simple global minimum of all RTT measurements from the connection, or
 a windowed min-filtered value of recent RTT measurements. This
 document does not specify an exact approach.

 Step 2: Update RACK.reo_wnd.

 To handle the prevalent small degree of reordering, RACK.reo_wnd
 serves as an allowance for settling time before marking a packet
 lost. By default it is 1 millisecond. We RECOMMEND implementing the
 reordering detection in [REORDER-DETECT][RFC4737] to dynamically
 adjust the reordering window. When the sender detects packet
 reordering RACK.reo_wnd MAY be changed to RACK.min_RTT/4. We discuss
 more about the reordering window in the next section.

 Step 3: Advance RACK.xmit_ts and update RACK.RTT and RACK.end_seq

 Given the information provided in an ACK, each packet cumulatively
 ACKed or SACKed is marked as delivered in the scoreboard. Among all

Cheng, et al. Expires May 4, 2017 [Page 5]

Internet-Draft RACK October 2016

 the packets newly ACKed or SACKed in the connection, record the most
 recent Packet.xmit_ts in RACK.xmit_ts if it is ahead of RACK.xmit_ts.
 Ignore the packet if any of its TCP sequences has been retransmitted
 before and either of two condition is true:

 1. The Timestamp Echo Reply field (TSecr) of the ACK’s timestamp
 option [RFC7323], if available, indicates the ACK was not
 acknowledging the last retransmission of the packet.

 2. The packet was last retransmitted less than RACK.min_rtt ago.
 While it is still possible the packet is spuriously retransmitted
 because of a recent RTT decrease, we believe that our experience
 suggests this is a reasonable heuristic.

 If this ACK causes a change to RACK.xmit_ts then record the RTT and
 sequence implied by this ACK:

 RACK.RTT = Now() - RACK.xmit_ts
 RACK.end_seq = Packet.end_seq

 Exit here and omit the following steps if RACK.xmit_ts has not
 changed.

 Step 4: Detect losses.

 For each packet that has not been fully SACKed, if RACK.xmit_ts is
 after Packet.xmit_ts + RACK.reo_wnd, then mark the packet (or its
 corresponding sequence range) lost in the scoreboard. The rationale
 is that if another packet that was sent later has been delivered, and
 the reordering window or "reordering settling time" has already
 passed, the packet was likely lost.

 If a packet that was sent later has been delivered, but the
 reordering window has not passed, then it is not yet safe to deem the
 given packet lost. Using the basic algorithm above, the sender would
 wait for the next ACK to further advance RACK.xmit_ts; but this risks
 a timeout (RTO) if no more ACKs come back (e.g, due to losses or
 application limit). For timely loss detection, the sender MAY
 install a "reordering settling" timer set to fire at the earliest
 moment at which it is safe to conclude that some packet is lost. The
 earliest moment is the time it takes to expire the reordering window
 of the earliest unacked packet in flight.

 This timer expiration value can be derived as follows. As a starting
 point, we consider that the reordering window has passed if the
 RACK.packet was sent sufficiently after the packet in question, or a
 sufficient time has elapsed since the RACK.packet was S/ACKed, or
 some combination of the two. More precisely, RACK marks a packet as

Cheng, et al. Expires May 4, 2017 [Page 6]

Internet-Draft RACK October 2016

 lost if the reordering window for a packet has elapsed through the
 sum of:

 1. delta in transmit time between a packet and the RACK.packet

 2. delta in time between when RACK.ack_ts and now

 So we mark a packet as lost if:

 RACK.xmit_ts > Packet.xmit_ts
 AND
 (RACK.xmit_ts - Packet.xmit_ts) + (now - RACK.ack_ts) > RACK.reo_wnd

 If we solve this second condition for "now", the moment at which we
 can declare a packet lost, then we get:

 now > Packet.xmit_ts + RACK.reo_wnd + (RACK.ack_ts - RACK.xmit_ts)

 Then (RACK.ack_ts - RACK.xmit_ts) is just the RTT of the packet we
 used to set RACK.xmit_ts, so this reduces to:

 now > Packet.xmit_ts + RACK.RTT + RACK.reo_wnd

 The following pseudocode implements the algorithm above. When an ACK
 is received or the RACK timer expires, call RACK_detect_loss(). The
 algorithm includes an additional optimization to break timestamp ties
 by using the TCP sequence space. The optimization is particularly
 useful to detect losses in a timely manner with TCP Segmentation
 Offload, where multiple packets in one TSO blob have identical
 timestamps. It is also useful when the timestamp clock granularity
 is close to or longer than the actual round trip time.

Cheng, et al. Expires May 4, 2017 [Page 7]

Internet-Draft RACK October 2016

 RACK_detect_loss():
 min_timeout = 0

 For each packet, Packet, in the scoreboard:
 If Packet is already SACKed, ACKed,
 or marked lost and not yet retransmitted:
 Skip to the next packet

 If Packet.xmit_ts > RACK.xmit_ts:
 Skip to the next packet
 /* Timestamp tie breaker */
 If Packet.xmit_ts == RACK.xmit_ts AND
 Packet.end_seq > RACK.end_seq:
 Skip to the next packet

 timeout = Packet.xmit_ts + RACK.RTT + RACK.reo_wnd + 1
 If Now() >= timeout:
 Mark Packet lost
 Else If (min_timeout == 0) or (timeout is before min_timeout):
 min_timeout = timeout

 If min_timeout != 0
 Arm a timer to call RACK_detect_loss() after min_timeout

6. Tail Loss Probe: fast recovery on tail losses

 This section describes a supplemental algorithm, Tail Loss Probe
 (TLP), which leverages RACK to further reduce RTO recoveries. TLP
 triggers fast recovery to quickly repair tail losses that can
 otherwise only be recoverable by RTOs. After an original data
 transmission, TLP sends a probe data segment within one to two RTTs.
 The probe data segment can either be new, previously unsent data, or
 a retransmission. In either case the goal is to elicit more feedback
 from the receiver, in the form of an ACK (potentially with SACK
 blocks), to allow RACK to trigger fast recovery instead of an RTO.

 An RTO occurs when the first unacknowledged sequence number is not
 acknowledged after a conservative period of time has elapsed [RFC6298
 [1]]. Common causes of RTOs include:

 1. Tail losses at the end of an application transaction.

 2. Lost retransmits, which can halt fast recovery if the ACK stream
 completely dries up. For example, consider a window of three
 data packets (P1, P2, P3) that are sent; P1 and P2 are dropped.
 On receipt of a SACK for P3, RACK marks P1 and P2 as lost and
 retransmits them as R1 and R2. Suppose R1 and R2 are lost as

Cheng, et al. Expires May 4, 2017 [Page 8]

Internet-Draft RACK October 2016

 well, so there are no more returning ACKs to detect R1 and R2 as
 lost. Recovery stalls.

 3. Tail losses of ACKs.

 4. An unexpectedly long round-trip time (RTT). This can cause ACKs
 to arrive after the RTO timer expires. The F-RTO algorithm
 [RFC5682 [2]] is designed to detect such spurious retransmission
 timeouts and at least partially undo the consequences of such
 events (though F-RTO cannot be used in many situations).

6.1. Tail Loss Probe: An Example

 Following is an example of TLP. All events listed are at a TCP
 sender.

 (1) Sender transmits segments 1-10: 1, 2, 3, ..., 8, 9, 10. There is
 no more new data to transmit. A PTO is scheduled to fire in 2 RTTs,
 after the transmission of the 10th segment. (2) Sender receives
 acknowledgements (ACKs) for segments 1-5; segments 6-10 are lost and
 no ACKs are received. The sender reschedules its PTO timer relative
 to the last received ACK, which is the ACK for segment 5 in this
 case. The sender sets the PTO interval using the calculation
 described in step (2) of the algorithm. (3) When PTO fires, sender
 retransmits segment 10. (4) After an RTT, a SACK for packet 10
 arrives. The ACK also carries SACK holes for segments 6, 7, 8 and 9.
 This triggers RACK-based loss recovery. (5) The connection enters
 fast recovery and retransmits the remaining lost segments.

6.2. Tail Loss Probe Algorithm Details

 We define the terminology used in specifying the TLP algorithm:

 FlightSize: amount of outstanding data in the network, as defined in
 [RFC5681 [3]].

 RTO: The transport’s retransmission timeout (RTO) is based on
 measured round-trip times (RTT) between the sender and receiver, as
 specified in [RFC6298 [4]] for TCP. PTO: Probe timeout is a timer
 event indicating that an ACK is overdue. Its value is constrained to
 be smaller than or equal to an RTO.

 SRTT: smoothed round-trip time, computed as specified in [RFC6298
 [5]].

 Open state: the sender has so far received in-sequence ACKs with no
 SACK blocks, and no other indications (such as retransmission
 timeout) that a loss may have occurred.

Cheng, et al. Expires May 4, 2017 [Page 9]

Internet-Draft RACK October 2016

 The TLP algorithm has three phases, which we discuss in turn.

6.2.1. Phase 1: Scheduling a loss probe

 Step 1: Check conditions for scheduling a PTO.

 A sender should schedule a PTO after transmitting new data or
 receiving an ACK if the following conditions are met:

 (a) The connection is in Open state. (b) The connection is either
 cwnd-limited (the data in flight matches or exceeds the cwnd) or
 application-limited (there is no unsent data that the receiver window
 allows to be sent). (c) SACK is enabled for the connection.

 (d) The most recently transmitted data was not itself a TLP probe
 (i.e. a sender MUST NOT send consecutive or back-to-back TLP probes).

 (e) TLPRtxOut is false, indicating there is no TLP retransmission
 episode in progress (see below).

 Step 2: Select the duration of the PTO.

 A sender SHOULD use the following logic to select the duration of a
 PTO:

 If an SRTT estimate is available:
 PTO = 2 * SRTT
 Else:
 PTO = initial RTO of 1 sec
 If FlightSize == 1:
 PTO = max(PTO, 1.5 * SRTT + WCDelAckT)
 PTO = max(10ms, PTO)
 PTO = min(RTO, PTO)

 Aiming for a PTO value of 2*SRTT allows a sender to wait long enough
 to know that an ACK is overdue. Under normal circumstances, i.e. no
 losses, an ACK typically arrives in one SRTT. But choosing PTO to be
 exactly an SRTT is likely to generate spurious probes given that
 network delay variance and even end-system timings can easily push an
 ACK to be above an SRTT. We chose PTO to be the next integral
 multiple of SRTT. Similarly, current end-system processing latencies
 and timer granularities can easily push an ACK beyond 10ms, so
 senders SHOULD use a minimum PTO value of 10ms. If RTO is smaller
 than the computed value for PTO, then a probe is scheduled to be sent
 at the RTO time.

 WCDelAckT stands for worst case delayed ACK timer. When FlightSize
 is 1, PTO is inflated additionally by WCDelAckT time to compensate

Cheng, et al. Expires May 4, 2017 [Page 10]

Internet-Draft RACK October 2016

 for a potential long delayed ACK timer at the receiver. The
 RECOMMENDED value for WCDelAckT is 200ms, or the delayed ACK interval
 value explicitly negotiated by the sender and receiver, if one is
 available.

6.2.2. Phase 2: Sending a loss probe

 When the PTO fires, transmit a probe data segment:

 If a previously unsent segment exists AND
 the receive window allows new data to be sent:
 Transmit that new segment
 FlightSize += SMSS
 The cwnd remains unchanged
 Record Packet.xmit_ts
 Else:
 Retransmit the last segment
 The cwnd remains unchanged

6.2.3. Phase 3: ACK processing

 On each incoming ACK, the sender should ancel any existing loss probe
 timer. The timer will be re-scheduled if appropriate.

6.3. TLP recovery detection

 If the only loss in an outstanding window of data was the last
 segment, then a TLP loss probe retransmission of that data segment
 might repair the loss. TLP loss detection examines ACKs to detect
 when the probe might have repaired a loss, and thus allows congestion
 control to properly reduce the congestion window (cwnd) [RFC5681
 [6]].

 Consider a TLP retransmission episode where a sender retransmits a
 tail packet in a flight. The TLP retransmission episode ends when
 the sender receives an ACK with a SEG.ACK above the SND.NXT at the
 time the episode started. During the TLP retransmission episode the
 sender checks for a duplicate ACK or D-SACK indicating that both the
 original segment and TLP retransmission arrived at the receiver,
 meaning there was no loss that needed repairing. If the TLP sender
 does not receive such an indication before the end of the TLP
 retransmission episode, then it MUST estimate that either the
 original data segment or the TLP retransmission were lost, and
 congestion control MUST react appropriately to that loss as it would
 any other loss.

 Since a significant fraction of the hosts that support SACK do not
 support duplicate selective acknowledgments (D-SACKs) [RFC2883 [7]]

Cheng, et al. Expires May 4, 2017 [Page 11]

Internet-Draft RACK October 2016

 the TLP algorithm for detecting such lost segments relies only on
 basicRFC 2018 [8] SACK support [RFC2018 [9]].

 Definitions of variables

 TLPRtxOut: a boolean indicating whether there is an unacknowledged
 TLP retransmission.

 TLPHighRxt: the value of SND.NXT at the time of sending a TLP
 retransmission.

6.3.1. Initializing and resetting state

 When a connection is created, or suffers a retransmission timeout, or
 enters fast recovery, it should reset TLPRtxOut to false

6.3.2. Recording loss probe states

 Senders must only send a TLP loss probe retransmission if TLPRtxOut
 is false. This ensures that at any given time a connection has at
 most one outstanding TLP retransmission. This allows the sender to
 use the algorithm described in this section to estimate whether any
 data segments were lost.

 Note that this condition only restricts TLP loss probes that are
 retransmissions. There may be an arbitrary number of outstanding
 unacknowledged TLP loss probes that consist of new, previously-unsent
 data, since the retransmission timeout and fast recovery algorithms
 are sufficient to detect losses of such probe segments.

 Upon sending a TLP probe that is a retransmission, the sender set
 TLPRtxOut to true and TLPHighRxt to SND.NXT

 Detecting recoveries done by loss probes

 Step 1: Track ACKs indicating receipt of original and retransmitted
 segments

 A sender considers both the original segment and TLP probe
 retransmission segment as acknowledged if either (i) or (ii) are
 true:

 (i) This is a duplicate acknowledgment (as defined in [RFC5681 [10]],
 section 2), and all of the following conditions are met:

 (a) TLPRtxOut is true

 (b) SEG.ACK == TLPHighRxt

Cheng, et al. Expires May 4, 2017 [Page 12]

Internet-Draft RACK October 2016

 (c) SEG.ACK == SND.UNA

 (d) the segment contains no SACK blocks for sequence ranges above
 TLPHighRxt

 (e) the segment contains no data

 (f) the segment is not a window update

 (ii) This is an ACK acknowledging a sequence number at or above
 TLPHighRxt and it contains a D-SACK; i.e. all of the following
 conditions are met:

 (a) TLPRtxOut is true

 (b) SEG.ACK >= TLPHighRxt and

 (c) the ACK contains a D-SACK block

 If either conditions (i) or (ii) are met, then the sender estimates
 that the receiver received both the original data segment and the TLP
 probe retransmission, and so the sender considers the TLP episode to
 be done, and records that fact by setting TLPRtxOut to false.

 Step 2: Mark the end of a TLP retransmission episode and detect
 losses

 If the sender receives a cumulative ACK for data beyond the TLP loss
 probe retransmission then, in the absence of reordering on the return
 path of ACKs, it should have received any ACKs for the original
 segment and TLP probe retransmission segment. At that time, if the
 TLPRtxOut flag is still true and thus indicates that the TLP probe
 retransmission remains unacknowledged, then the sender should presume
 that at least one of its data segments was lost, so it SHOULD invoke
 a congestion control response equivalent to the response to any other
 loss.

 More precisely, on each ACK, after executing step (5a) the sender
 SHOULD reset the TLPRtxOut to false, and invoke the congestion
 control about the loss event that TLP has successfully repaired.

7. RACK and TLP discussions

7.1. Advantages

 The biggest advantage of RACK is that every data packet, whether it
 is an original data transmission or a retransmission, can be used to
 detect losses of the packets sent prior to it.

Cheng, et al. Expires May 4, 2017 [Page 13]

Internet-Draft RACK October 2016

 Example: tail drop. Consider a sender that transmits a window of
 three data packets (P1, P2, P3), and P1 and P3 are lost. Suppose the
 transmission of each packet is at least RACK.reo_wnd (1 millisecond
 by default) after the transmission of the previous packet. RACK will
 mark P1 as lost when the SACK of P2 is received, and this will
 trigger the retransmission of P1 as R1. When R1 is cumulatively
 acknowledged, RACK will mark P3 as lost and the sender will
 retransmit P3 as R3. This example illustrates how RACK is able to
 repair certain drops at the tail of a transaction without any timer.
 Notice that neither the conventional duplicate ACK threshold
 [RFC5681], nor [RFC6675], nor the Forward Acknowledgment [FACK]
 algorithm can detect such losses, because of the required packet or
 sequence count.

 Example: lost retransmit. Consider a window of three data packets
 (P1, P2, P3) that are sent; P1 and P2 are dropped. Suppose the
 transmission of each packet is at least RACK.reo_wnd (1 millisecond
 by default) after the transmission of the previous packet. When P3
 is SACKed, RACK will mark P1 and P2 lost and they will be
 retransmitted as R1 and R2. Suppose R1 is lost again (as a tail
 drop) but R2 is SACKed; RACK will mark R1 lost for retransmission
 again. Again, neither the conventional three duplicate ACK threshold
 approach, nor [RFC6675], nor the Forward Acknowledgment [FACK]
 algorithm can detect such losses. And such a lost retransmission is
 very common when TCP is being rate-limited, particularly by token
 bucket policers with large bucket depth and low rate limit.
 Retransmissions are often lost repeatedly because standard congestion
 control requires multiple round trips to reduce the rate below the
 policed rate.

 Example: (small) degree of reordering. Consider a common reordering
 event: a window of packets are sent as (P1, P2, P3). P1 and P2 carry
 a full payload of MSS octets, but P3 has only a 1-octet payload due
 to application-limited behavior. Suppose the sender has detected
 reordering previously (e.g., by implementing the algorithm in
 [REORDER-DETECT]) and thus RACK.reo_wnd is min_RTT/4. Now P3 is
 reordered and delivered first, before P1 and P2. As long as P1 and
 P2 are delivered within min_RTT/4, RACK will not consider P1 and P2
 lost. But if P1 and P2 are delivered outside the reordering window,
 then RACK will still falsely mark P1 and P2 lost. We discuss how to
 reduce the false positives in the end of this section.

 The examples above show that RACK is particularly useful when the
 sender is limited by the application, which is common for
 interactive, request/response traffic. Similarly, RACK still works
 when the sender is limited by the receive window, which is common for
 applications that use the receive window to throttle the sender.

Cheng, et al. Expires May 4, 2017 [Page 14]

Internet-Draft RACK October 2016

 For some implementations (e.g., Linux), RACK works quite efficiently
 with TCP Segmentation Offload (TSO). RACK always marks the entire
 TSO blob lost because the packets in the same TSO blob have the same
 transmission timestamp. By contrast, the counting based algorithms
 (e.g., [RFC3517][RFC5681]) may mark only a subset of packets in the
 TSO blob lost, forcing the stack to perform expensive fragmentation
 of the TSO blob, or to selectively tag individual packets lost in the
 scoreboard.

7.2. Disadvantages

 RACK requires the sender to record the transmission time of each
 packet sent at a clock granularity of one millisecond or finer. TCP
 implementations that record this already for RTT estimation do not
 require any new per-packet state. But implementations that are not
 yet recording packet transmission times will need to add per-packet
 internal state (commonly either 4 or 8 octets per packet) to track
 transmission times. In contrast, the conventional approach requires
 one variable to track number of duplicate ACK threshold.

7.3. Adjusting the reordering window

 RACK uses a reordering window of min_rtt / 4. It uses the minimum
 RTT to accommodate reordering introduced by packets traversing
 slightly different paths (e.g., router-based parallelism schemes) or
 out-of-order deliveries in the lower link layer (e.g., wireless links
 using link-layer retransmission). Alternatively, RACK can use the
 smoothed RTT used in RTT estimation [RFC6298]. However, smoothed RTT
 can be significantly inflated by orders of magnitude due to
 congestion and buffer-bloat, which would result in an overly
 conservative reordering window and slow loss detection. Furthermore,
 RACK uses a quarter of minimum RTT because Linux TCP uses the same
 factor in its implementation to delay Early Retransmit [RFC5827] to
 reduce spurious loss detections in the presence of reordering, and
 experience shows that this seems to work reasonably well.

 One potential improvement is to further adapt the reordering window
 by measuring the degree of reordering in time, instead of packet
 distances. But that requires storing the delivery timestamp of each
 packet. Some scoreboard implementations currently merge SACKed
 packets together to support TSO (TCP Segmentation Offload) for faster
 scoreboard indexing. Supporting per-packet delivery timestamps is
 difficult in such implementations. However, we acknowledge that the
 current metric can be improved by further research.

Cheng, et al. Expires May 4, 2017 [Page 15]

Internet-Draft RACK October 2016

7.4. Relationships with other loss recovery algorithms

 The primary motivation of RACK is to ultimately provide a simple and
 general replacement for some of the standard loss recovery algorithms
 [RFC5681][RFC6675][RFC5827][RFC4653] and nonstandard ones
 [FACK][THIN-STREAM]. While RACK can be a supplemental loss detection
 on top of these algorithms, this is not necessary, because the RACK
 implicitly subsumes most of them.

 [RFC5827][RFC4653][THIN-STREAM] dynamically adjusts the duplicate ACK
 threshold based on the current or previous flight sizes. RACK takes
 a different approach, by using only one ACK event and a reordering
 window. RACK can be seen as an extended Early Retransmit [RFC5827]
 without a FlightSize limit but with an additional reordering window.
 [FACK] considers an original packet to be lost when its sequence
 range is sufficiently far below the highest SACKed sequence. In some
 sense RACK can be seen as a generalized form of FACK that operates in
 time space instead of sequence space, enabling it to better handle
 reordering, application-limited traffic, and lost retransmissions.

 Nevertheless RACK is still an experimental algorithm. Since the
 oldest loss detection algorithm, the 3 duplicate ACK threshold
 [RFC5681], has been standardized and widely deployed, we RECOMMEND
 TCP implementations use both RACK and the algorithm specified in
 Section 3.2 in [RFC5681] for compatibility.

 RACK is compatible with and does not interfere with the the standard
 RTO [RFC6298], RTO-restart [RFC7765], F-RTO [RFC5682] and Eifel
 algorithms [RFC3522]. This is because RACK only detects loss by
 using ACK events. It neither changes the timer calculation nor
 detects spurious timeouts.

 Furthermore, RACK naturally works well with Tail Loss Probe [TLP]
 because a tail loss probe solicit seither an ACK or SACK, which can
 be used by RACK to detect more losses. RACK can be used to relax
 TLP’s requirement for using FACK and retransmitting the the highest-
 sequenced packet, because RACK is agnostic to packet sequence
 numbers, and uses transmission time instead. Thus TLP can be
 modified to retransmit the first unacknowledged packet, which can
 improve application latency.

7.5. Interaction with congestion control

 RACK intentionally decouples loss detection from congestion control.
 RACK only detects losses; it does not modify the congestion control
 algorithm [RFC5681][RFC6937]. However, RACK may detect losses
 earlier or later than the conventional duplicate ACK threshold
 approach does. A packet marked lost by RACK SHOULD NOT be

Cheng, et al. Expires May 4, 2017 [Page 16]

Internet-Draft RACK October 2016

 retransmitted until congestion control deems this appropriate (e.g.
 using [RFC6937]).

 RACK is applicable for both fast recovery and recovery after a
 retransmission timeout (RTO) in [RFC5681]. The distinction between
 fast recovery or RTO recovery is not necessary because RACK is purely
 based on the transmission time order of packets. When a packet
 retransmitted by RTO is acknowledged, RACK will mark any unacked
 packet sent sufficiently prior to the RTO as lost, because at least
 one RTT has elapsed since these packets were sent.

7.6. TLP recovery detection with delayed ACKs

 Delayed ACKs complicate the detection of reparies done by TLP, since
 with a delayed ACK the sender receives one fewer ACK than would
 normally be expected. To mitigate this complication, before sending
 a TLP loss probe retransmission, the sender should attempt to wait
 long enough that the receiver has sent any delayed ACKs that it is
 withholding. The sender algorithm described above features such a
 delay, in the form of WCDelAckT. Furthermore, if the receiver
 supports duplicate selective acknowledgments (D-SACKs) [RFC2883] then
 in the case of a delayed ACK the sender’s TLP loss detection
 algorithm (in step (4)(a)(ii), above) can use the D-SACK information
 to infer that the original and TLP retransmission both arrived at the
 receiver.

 If there is ACK loss or a delayed ACK without a D-SACK, then this
 algorithm is conservative, because the sender will reduce cwnd when
 in fact there was no packet loss. In practice this is acceptable,
 and potentially even desirable: if there is reverse path congestion
 then reducing cwnd is prudent.

 However, in practice sending a single byte of data turned out to be
 problematic to implement and more fragile than necessary. Instead we
 use a full segment to probe but have to add complexity to compensate
 for the probe itself masking losses.

7.7. RACK for other transport protocols

 RACK can be implemented in other transport protocols. The algorithm
 can skip step 3 and simplify if the protocol can support unique
 transmission or packet identifier (e.g. TCP echo options). For
 example, the QUIC protocol implements RACK [QUIC-LR] .

Cheng, et al. Expires May 4, 2017 [Page 17]

Internet-Draft RACK October 2016

8. Experiments and Performance Evaluations

 RACK and TLP have been deployed at Google including the connections
 to the users in the Internet and internally. We conducted an
 performance evaluation experiment on RACK and TLP on a small set of
 Google Web servers in western-europe that serve most European and
 some African countries. The length of the experiments was five days
 (one weekend plus 3 weekdays) in October 2016, where the servers were
 divided evenly into three groups.

 Group 1 (control): RACK off, TLP off

 Group 2: RACK on, TLP off

 Group 3: RACK on, TLP on

 All groups use Linux using the Cubic congestion control with an
 initial window of 10 packets and fq/pacing qdisc. In term of
 specific recovery features, all of them enable RFC3517 (Conservative
 SACK-based recovery) and RFC5682 (F-RTO) but disable FACK because it
 is not an IETF RFC. The goal of this setup is to compare RACK and
 TLP to RFC-based loss recoveries instead of Linux-based recoveries.

 The servers sit behind a load-balancer that distributes the
 connections evenly across the three groups.

 Each group handles similar amount of connections and send and receive
 similar amount of data. We compare total amount of time spent in
 loss recovery across groups. The recovery time is from when the
 recovery and retransmit starts, till the remote has acknowledge
 beyond the highest sequence at the time the recovery starts.
 Therefore the recovery includes both fast recoveries and timeout
 recoveries. Our data shows that Group 2 recovery latency is only 2%
 lower than the Group 1 recovery latency. But Group 3 recovery
 latency is 25% lower than Group 1 by reducing 40% of the RTOs
 triggered recoveries! Therefore it is very important to implement
 both TLP and RACK for performance.

 We want to emphasize that the current experiment is limited in terms
 of network coverage. The connectivities in western-europe is fairly
 good therefore loss recovery is not a performance bottleneck. We
 plan to expand our experiments in regions with worse connectivities,
 in particular on networks with strong traffic policing. We also plan
 to add the fourth group to disable RFC3517 to use solely RACK and TLP
 only to see if RACK plus TLP can completely replace all other SACK
 based recoveries.

Cheng, et al. Expires May 4, 2017 [Page 18]

Internet-Draft RACK October 2016

9. Security Considerations

 RACK does not change the risk profile for TCP.

 An interesting scenario is ACK-splitting attacks [SCWA99]: for an
 MSS-size packet sent, the receiver or the attacker might send MSS
 ACKs that SACK or acknowledge one additional byte per ACK. This
 would not fool RACK. RACK.xmit_ts would not advance because all the
 sequences of the packet are transmitted at the same time (carry the
 same transmission timestamp). In other words, SACKing only one byte
 of a packet or SACKing the packet in entirety have the same effect on
 RACK.

10. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

11. Acknowledgments

 The authors thank Matt Mathis for his insights in FACK and Michael
 Welzl for his per-packet timer idea that inspired this work. Eric
 Dumazet, Randy Stewart, Van Jacobson, Ian Swett, and Jana Iyengar
 contributed to the algorithm and the implementations in Linux,
 FreeBSD and QUIC.

12. References

12.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", September
 1981.

 [RFC2018] Mathis, M. and J. Mahdavi, "TCP Selective Acknowledgment
 Options", RFC 2018, October 1996.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", May 2013.

 [RFC4737] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
 S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
 November 2006.

Cheng, et al. Expires May 4, 2017 [Page 19]

Internet-Draft RACK October 2016

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",
 RFC 6675, August 2012.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298, June
 2011.

 [RFC5827] Allman, M., Ayesta, U., Wang, L., Blanton, J., and P.
 Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827, April 2010.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance",
 September 2014.

12.2. Informative References

 [FACK] Mathis, M. and M. Jamshid, "Forward acknowledgement:
 refining TCP congestion control", ACM SIGCOMM Computer
 Communication Review, Volume 26, Issue 4, Oct. 1996. ,
 1996.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Drops", draft-dukkipati-tcpm-tcp-loss-probe-01 (work
 in progress), August 2013.

 [RFC7765] Hurtig, P., Brunstrom, A., Petlund, A., and M. Welzl, "TCP
 and SCTP RTO Restart", February 2016.

Cheng, et al. Expires May 4, 2017 [Page 20]

Internet-Draft RACK October 2016

 [REORDER-DETECT]
 Zimmermann, A., Schulte, L., Wolff, C., and A. Hannemann,
 "Detection and Quantification of Packet Reordering with
 TCP", draft-zimmermann-tcpm-reordering-detection-02 (work
 in progress), November 2014.

 [QUIC-LR] Iyengar, J. and I. Swett, "QUIC Loss Recovery And
 Congestion Control", draft-tsvwg-quic-loss-recovery-01
 (work in progress), June 2016.

 [THIN-STREAM]
 Petlund, A., Evensen, K., Griwodz, C., and P. Halvorsen,
 "TCP enhancements for interactive thin-stream
 applications", NOSSDAV , 2008.

 [SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP Congestion Control With a Misbehaving Receiver", ACM
 Computer Communication Review, 29(5) , 1999.

 [POLICER16]
 Flach, T., Papageorge, P., Terzis, A., Pedrosa, L., Cheng,
 Y., Karim, T., Katz-Bassett, E., and R. Govindan, "An
 Analysis of Traffic Policing in the Web", ACM SIGCOMM ,
 2016.

12.3. URIs

 [1] https://tools.ietf.org/html/rfc6298

 [2] https://tools.ietf.org/html/rfc5682

 [3] https://tools.ietf.org/html/rfc5681

 [4] https://tools.ietf.org/html/rfc6298

 [5] https://tools.ietf.org/html/rfc6298

 [6] https://tools.ietf.org/html/rfc5681

 [7] https://tools.ietf.org/html/rfc2883

 [8] https://tools.ietf.org/html/rfc2018

 [9] https://tools.ietf.org/html/rfc2018

 [10] https://tools.ietf.org/html/rfc5681

Cheng, et al. Expires May 4, 2017 [Page 21]

Internet-Draft RACK October 2016

Authors’ Addresses

 Yuchung Cheng
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043
 USA

 Email: ycheng@google.com

 Neal Cardwell
 Google, Inc
 76 Ninth Avenue
 New York, NY 10011
 USA

 Email: ncardwell@google.com

 Nandita Dukkipati
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043
 USA

 Email: nanditad@google.com

Cheng, et al. Expires May 4, 2017 [Page 22]

