Net wor k Wor ki ng Group O Friel

I nternet-Draft R Barnes
I nt ended status: Standards Track M Pritikin
Expires: May 3, 2018 Ci sco

Cct ober 30, 2017

Appli cation-Layer TLS
draft-friel-tls-over-http-00

Abst ract

Many clients need to establish secure connections to application
services but face chall enges establishing these connections due to
the presence of m ddl eboxes that term nate TLS connections fromthe
client and restablish new TLS connections to the service. This
docunent defines a nechanismfor transporting TLS records in HITP
message bodi es between clients and services. This enables clients
and services to establish secure connections using TLS at the
application layer, and treat any niddl eboxes that are intercepting

traffic at the network layer as untrusted transport. |In short, this
mechani sm noves the TLS handshake up the OSI stack to the application
| ayer.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on May 3, 2018.

Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal
Provisions Relating to | ETF Docunents

Friel, et al. Expires May 3, 2018 [Page 1]

Internet-Draft ATLS

(https://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this docunent.

Cct ober 2017

in effect on the date of

Pl ease revi ew t hese documents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

PR

8.
9.

ABADAD

~N N~

10.
11.
12.
12.1. B.1 OpenSSL .
12. 2. B. 2 Java JSSE

14.

aoooaoaa

PONPTZOORWNE

o000

I ntroduction

Ter mi nol ogy . .

ATLS Transport Goal s
Architecture Overview .

.1. Network Architecture

.2. Application Architecture . .
.3. Application Arthiecture Beneflts
.4. Inplementation e e

ATLS Overvi ew . .o

TLS Connections . .
Prot ocol Introduction .
TLS Sessi on Tracki ng
Upgrade to Websocket
Service Container Affinity
Keyi ng Material Exporting .
rotocol Details e
Message Body -

HTTP Cont ent - Type .

Client Requests .

Server Responses . .

ATLS Sessi on Establi shmant

.1. ATLS Handshake Message S.eqijence FI ow
.2. Detailed ATLS Handshake . . .
.3. Application Data Exchange .

RTT Consi der ati ons
| ANA Consi derations .
Security Consi derations .

Appendi x A. TLS Sof t ware S'.[ack Oonfl gur atl on.

Appendi x B. Pseudo Code .

13. Appendi x C. Exanpl e ATLS Handshake

I nformati ve References

Aut hors’ Addresses

Friel,

et al. Expires May 3, 2018

Provi sions and are provided wi thout warranty as

COOWWOWWOWOVONNOOOOOOUITADWWW

[Page 2]

Internet-Draft ATLS Cct ober 2017

1.

I nt roducti on

There are far nore classes of clients being deployed on today’s
networks than at any tine previously. This poses challenges for

net wor k adni ni stators who need to nmange their network and the clients
connecting to their network, and poses chall enges for client vendors
and client software devel opers who nust ensure that their clients can
connect to all required services.

One comon exanple is where a client is deployed on a |ocal domain
network that protects its perineter using a TLS term nating

ni ddl ebox, and the client needs to establish a secure connection to a
service in a different network via the mniddl ebox. Traditionally,
this has been enabl ed by the network adm nistrator deploying the
necessary certificate authority trusted roots on the client. This
can be achi eved at scal e using standard tools that enable the

adm nistrator to automatically push trusted roots out to all client
machines in the network froma centralised donmain controller. This
wor ks for for personal computers, |aptops and servers running
standard Operating Systenms that can be centrally managed. This
client managenent process breaks for nmultil pe classes of clients that
are being depl oyed today, there is no standard nechani smfor
configuring trusted roots on these clients, and there is no standard
mechai smfor these clients to securely traverse m ddl eboxes.

The TLS over HTTP nechani smdefined in this docunment enables clients
to traverse m ddl eboxes that restrict conmunications to HITP traffic
they have inserted thenselves into, and establish secure connections
to services across network dommi n boundari es.

Ter i nol ogy

TLS over HITP is referred to as ATLS throughout this docunent i.e.
"Application Layer TLS"

ATLS Transport Coal s
The high | evel goals driving the design of this nmechanismare

0 reuse existing TLS specifications [RFC5246] [I-D.ietf-tls-tlsl3]
as is without requiring any protocol changes

o work with all versions of TLS
0 do not require any changes to current TLS software stacks

0 do not nmandate constraints on how the TLS stack is configured or
used

Friel, et al. Expires May 3, 2018 [Page 3]

Internet-Draft ATLS Cct ober 2017

0 be forward conpatible with future TLS versions
o work with both HTTP and HTTPS transport

0 avoid introducing TLS protocol handling |ogic or semantics into
the HTTP application layer i.e. TLS protocol know edge and | ogic
is handl ed by the TLS stack, HTTP is just a dunb transport

0 ensure the client and server software inplenentations are as
sinmpl e as possible

4. Architecture Overview
4. 1. Net wor k Architecture

A typical network deploynent is illustrated in Figure 1. 1t shows a
client connecting to a service via a mddlebox. It also shows a TLS
term nator deployed in front of the service. The client establishes
a transport layer TLS connection with the m ddl ebox (G >M TLS), the

m ddl ebox in turn opens a transport layer TLS connection with the TLS
term nator deployed in front of the service (M>T TLS). The client
can ignore any certificate validation errors when it connects to the
m ddl ebox. HITP nessages are transported over this |ayer between the
client and the service. Finally, application |ayer TLS nessages are
exchanged inside the HTTP nessage bodies in order to establish an
end-to-end TLS session between the client and the service (C>S TLS)

S + S +
| App Data | | App Data |
[RS + [RS + [RS +
| CG>S TLS | | CG>S TLS | | App Data
S + S + S +
| HTTP | | HTTP | | CG>S TLS |
S + S + S +
| CG>MTLS | | M>T TLS | [HTTP |
[RS + [RS + [RS +
[TCP [[TCP [[TCP [
S + S + S +
[S + S + S + E S +
| dient |----- > M ddl ebox |----- >| TLS Terminator |---->| Service
o m e e oo + Fom e e oo - + o a oo + TR +
N N
I I
L T Client to Service TLS Connection------------- +

Figure 1: Network Architecture

Friel, et al. Expires May 3, 2018 [Page 4]

Internet-Draft ATLS Cct ober 2017

4.2. Application Architecture

TLS software stacks all ow application devel opers to ’unplug the
default network socket transport layer and read and wite TLS records
directly frombyte buffers. This enables application devel opers to
create application |ayer TLS sessions, extract the raw TLS record
bytes fromthe bottom of the TLS stack, and transport these bytes
over any suitable transport. The TLS software stacks can generate
byte streanms of full TLS flights which may include nultiple TLS

records. This is illustrated in Figure 2 bel ow
TS + TR +
Handshake Records | | Handshake Records | |
------------------- >| TLS [-----mmmm e |
| | | Byte |
Unencrypted Data | Software | Encrypted Data [[
——————————————————— >| |[------------------->] Buffers
[St ack | | |
Encrypted Data | | Unencrypted Data | [
------------------- > e |
+omm e e o + Fomm e o +

Figure 2: TLS Stack Interfaces

These TLS software stack APIs enable application devel opers to build
the software architecture illustrated in Figure 3. The application
creates and interacts with an application |layer TLS session in order
to generate and consune raw TLS records. The application transports
these raw TLS records inside HTTP nessage bodi es using a standard
HTTP stack. The HTTP stack may in turn use either TLS or TCP
transport to conunicate with the peer. The application |ayer TLS
session and network | ayer TLS session can both |everage a shared,
common TLS software stack. This high | evel architecture is
applicable to both clients and services.

Friel, et al. Expires May 3, 2018 [Page 5]

I nt

4. 3.

Fri

ernet-Draft ATLS Cct ober 2017

o m e +

I | App

| | Dat a Fo-mm e - +

| Application |<------- >| App [R +

| | TLS | TLS [--->]| TLS |

| | Records | Session | | Stack |

| Foe->| < - >| | B +

I I I oo + A

I I I I

| | | JSON B + o m e oo o + B +
| | | Payload | HTTP | | Transport | | TCP/IIP |
| Fome> <emema > Stack |--->|] TLS Session |--->| Transport |
o m e + [R, + o m e + R +

Figure 3: Application Architecture
Application Arthiecture Benefits

There are several benefits to using a standard TLS software stack to
establish an application | ayer secure conmmuni cations channel between
a client and a service. These include:

0 no need to define a new cryptographic negotiati on and exchange
protocol beween client and service

o automatically benefit from new ci pher suites by sinply upgrading
the TLS software stack

o0 automaticaly benefit fromnew features, bugfixes, etc. in TLS
software stack upgrades

| mpl enent ati on

Pseudo code illustrating howto read and wite TLS records directly
frombyte buffers using both OpenSSL and Java JSSE is given in the
appendi ces.

ATLS Overvi ew

The assunption is that the client will establish a transport |ayer
connection to the server for exchange of HITP nessages. The
underlying transport |ayer connection could be over TCP or TLS. The
client will then establish an application |ayer TLS connection with
the server by exchanging TLS records with the server inside HITP
nessage requests and responses.

el, et al. Expires May 3, 2018 [Page 6]

Internet-Draft ATLS Cct ober 2017

5.1. TLS Connections

If the underlying transport |layer connection is TLS, this nmeans that
the client will establish two i ndependent TLS connecti ons:

0 one at the transport |ayer which could be directly with the
service or could be with a m ddl ebox

0 one at the application layer which will be with the service

As an optimisation, clients may choose to only use ATLS as a fallback
mechanismif certificate validation fails on the transport |ayer TLS
connection to the service. For the purposes of establishing a secure
connection with the service, the client does not need to perform any
certificate checks or validation on the transport |ayer TLS
connecti on.

Sinmlarly, the service nmay al so establish two independent TLS
connecti ons:

0 one at the transport |ayer which could be directly with the client
or could be with a m ddl ebox

0 one at the application layer which will be with the client

Once the application layer TLS connection is estabilshed, the client
may report to the service the TLS certificates that where presented
by the network | ayer TLS connection but this is application specific
behavi our and outside the scope of this specification

5.2. Protocol Introduction

Al'l application TLS records are transported as base64 encoded
payl oads i nside JSON nessage bodi es over HITP transport. Each
payl oad contains a full TLS flight nade up of one or nore TLS
records.

The client sends all application TLS records to the server in JSON
message bodies in POST requests.

The server sends all TLS records to the client in JSON nessage bodies
in 200 K responses to the POST requests.

No constraints are placed on the Content Type contained within the
transported TLS records. The TLS records nmay contai n handshake,
application_data, alert or change_ci pher_spec nessages. |f new
Cont ent Type nessages are defined in future TLS versions, these may
al so be transported using this protocol.

Friel, et al. Expires May 3, 2018 [Page 7]

Internet-Draft ATLS Cct ober 2017

If the server is able to handle the application |layer TLS records
included in the request, the server always responds with a 200 K and
i ncludes any application TLS records in the nmessage body. The server
does not, for exanple, parse the TLS records generated by its TLS
software stack for an AlertDescription and attenpt to map this to a
suitable HTTP error response code.

The server only responds with a non-200 OK nessage if a server error
occurrs and it is not capable of handling the application |layer TLS
message received fromthe client.

5.3. TLS Session Tracking

The service needs to track nultiple client application |ayer TLS
sessions so that it can collerate TLS records received in HITP
message bodies with the appropriate TLS session. It does this by
inclusion of an explicit session identifier in the JSON nessage body.

5.4. Upgrade to Websocket

The HTTP connection between the client and the service may be
upgraded to a websocket if required. This would allow a server to
send a TLS close request, or any application data, asynchronously to
the client. Note that for the majority of use cases, there will be
no need to open a websocket between the client and service.

5.5. Service Container Affinity

Application services are typically distributed across nultiple
containers and virtual machines. As TLS is stateful, it nust be
ensured that sequences of TLS nessages are handl ed appropriately by
the service depl oyment and the service execution engi ne has access to
all necessary state information. This is explicilty outside the
scope of this specification as there are nmultiple well defined
mechani snms for enabling this.

5.6. Keying Material Exporting

This specification does not require, or preclude, the use of

[RFC5705]. When the client and service applications detect that the
ATLS session is established, the application nay use the key exporter
functions of the TLS stack to derive shared keys between client and
service. The client and service may then use these shared keys to
establi sh an i ndependent cryptographi c context and exchange data
usi ng any suitabl e nmechani smsuch as JSON Web Encryption [RFC7516] or
Encrypted Content-Encoding for HITP [RFC8188].

Friel, et al. Expires May 3, 2018 [Page 8]

Internet-Draft ATLS Cct ober 2017

6. Protocol Details
6.1. Message Body

Al'l message bodi es are JSON bodi es containing one or two paraneters:

{

"session": "<session-string>"
"records": "<base64 encoded TLS records>"

}

The following two paraneters are defined

session: This is set by the service and is used to correl ate requests
across nmultiple client sessions. This paraneter is included in all
messages apart fromthe first first message sent fromthe client to
the service. Wen a client sends the first request to establish an
ATLS session with a service, it MIST omit this parameter. Wen a
service handles the first request froma client (and that request

will include the ClientHello), and the service creates an interna
TLS session object, it MJIST return a server-generated "<session-
string>" to the client. The client MJST include that "<session-
string>" in all subsequent nessages to the server. |f the service is
unable to find a TLS session that correlates with the "<session-
string>" that a client specifies, the server MIST return 422
Unprocessabl e Entity.

records: This parameter is used to transport the base64 encoded TLS
records that the client and service applications retrieve fromtheir
TLS stack. This paraneter is sent in all requests fromthe client to
the service. This paranmeter nmay not necessarily be sent in all
response nmessages fromthe service to the client if the service has
no TLS records to send. This can happen with a TLS1.3 handshake.

6.2. HITP Content-Type
A new HTTP Content-Type is defined
Cont ent - Type: application/atls+json
6.3. dient Requests
When a client has base64 encoded TLS records to send to a service, it
will include the previously received "<session-string>" in the

request, or else omt this field for the very first handshake
message, and send the follow ng request to the service:

Friel, et al. Expires May 3, 2018 [Page 9]

Internet-Draft ATLS Cct ober 2017

POST /atls
Cont ent - Type: application/atls+json
{ . . .
"session": "<session-string>",
"records": "<base64 encoded TLS records>"
}

6.4. Server Responses

When a service has processed the TLS records received froma client
and has generated TLS records to reply with, it will send the
following reply to the client:

200 &K
Cont ent - Type: application/atls+json
{ . . .
"session": "<session-string>",
"records": "<base64 encoded TLS records>"
}

The server MUST respond with one of the foll owing status codes:

200 OK: The server was able to successfully parse the request and
process the TLS records using its TLS software stack.

400 Bad Request: The client’s request did not contain a JSON obj ect
of the form specified above.

422 Unprocessable Entity: The client presented a "<session-string>"
that the service is unable to correlate that to an existing TLS
sessi on.

Note that a status code of 200 OK does not indicate that the TLS
connection being negotiated is error-free. Alerts produced by TLS
will be returned in the encoded TLS records. A 200 K response
simply indicates that the client should provide the records encoded
in the response to its TLS stack

7. ATLS Session Establishnent

This section describes a typical ATLS session establishment flow

Friel, et al. Expires May 3, 2018 [Page 10]

Internet-Draft ATLS Cct ober 2017

7.1. ATLS Handshake Message Sequence Fl ow

The following flow chart shows an illustrative nessage sequence fl ow
for the first TLS handshake flight between a client and a service.

oo e e e e e e e e e e +
| Cient | ATLS Server |
Fomm e oo - B) B + ------- B) B +
I LS | | App | | HTTP | | HITP | | App | I LS |
| Session | +----- + | Stack | | Stack | +----- + | Session
Foemmmmaas + | S RS + 4-e--a-- + | Foemmmmaas +

I I I I I I

I I | HITP(S) | I I

| | | Transport | | |

| Create | | <--------- >| | |

[Session | [[[[

| <-----m----- I I I I I

I Start I I I I I

| Handshake | | | | |

| <----------- I I I I I

| TLS | | | | |

| Records | Package | [[[

[----------- > JSON | I I I

| |-------- >| PCOST | Unwap | |

| | [---------- > JSON | Create |

[[[[--------- >| Session |

| | | | |--------- >|

I I I I | TLS I

| | | | | Records |

I I I I |--------- >|

I I I I I TLS I

| | | | Package | Records |

| | | | ISON f<eeeoeeo-- |

[| Uwap | 200 K |<--------- [[

| TLS | JSON [<---mmmmm-- | | |

| Records | <-------- | | | |

| <-omoooee- | | | | |

I TLS I I I I I

| Records | | | | |

R >| I I I I

This process repeats until the handshake conpletes. Once the
application-layer TLS connection is ready to carry application data,
the ATLS server relays it to the application server that is
ultimately serving the rgeuest. That is, a given ATLS server is
assuned to be connected to a single application endpoint.

Friel, et al. Expires May 3, 2018 [Page 11]

Internet-Draft ATLS Cct ober 2017

PR + | ATLS | | App |

TLS Handshake
(POST/ 200)

Application Data
(PGST/ 200)

7.2. Detailed ATLS Handshake
0o Cdient establishes transport |ayer connection with service

This transport |ayer session can be established over TCP or TLS. |If
over TLS, the client does not need to performcertificate validation
on the TLS connection, and may ignore any certificate validation
errors if it does performcertificate validation

0o Cient creates an application TLS session object

The client application creates a TLS session object that is not bound
to any network socket. The client initiates a TLS handshake on the
session. This will result in the TLS session generating the TLS
record bytes for a full TLS handshake first flight. This will be a
ClientHell o nessage. Note that the client application does not
explicitly know what the contents of the TLS record bytes are.

0 The client base64 encodes the TLS flight 1 records and sends them
in a HITP POST to the service

POST /atls
Content - Type: application/atls

"records": "<base64 encoded flight 1>"

}

0 The service creates a TLS session for handling the request

The service notes that there is no "session" in the request and
creates an application TLS session object and a suitable "<session-
string>" for correlation. The service decodes the received base64
encoded "records" and passes themto the TLS session. The session
handl es the TLS handshake nmessage and generates a full TLS handshake

Friel, et al. Expires May 3, 2018 [Page 12]

Internet-Draft ATLS Cct ober 2017

response flight. Typically, this will be a ServerHello and
addi ti onal handshake nessages that are TLS version dependent. For
TLS1.3, this may include a Finished nmessage. Note that the service
application does not explicitly know what the contents of the TLS
record bytes are.

0 The service base64 encodes the TLS flight 1 response records and
sends themin the response to the client

The service MJST include its generated "session"

200 &K
Cont ent - Type: application/atls
{ . . .
"session": "<session-string>",
"records": "<base64 encoded flight 1 response>"
}

o0 The client passes the service response to its TLS session

The client decodes the received base64 encoded "records" and passes
themto the TLS session. The session handles the TLS handshake
message and generates a full TLS handshake second flight. This will
be a Fi nished nmessage, Certificate and CertificateVerify nmessages if
requi red, and additional handshake nmessages that are TLS version
dependent .

0 The client base64 encodes the TLS flight 2 records and sends them
in a HITP POST to the service

The client MJST include the "<session-string>" it received fromthe
servi ce.

POST /atls
Content - Type: application/atls

"session": "<session-string>",
"records": "<base64 encoded flight 2>"

}

0 The service passes the client response to the respective TLS
sessi on

The service extracts the "<session-string>" fromthe request and
finds the respective application TLS session object. The service
decodes the received base64 encoded "records" and passes themto the

Friel, et al. Expires May 3, 2018 [Page 13]

Internet-Draft ATLS Cct ober 2017

TLS session. The session handles the TLS handshake nessage and will
generates a full TLS handshake response flight where appropriate.
For TLS1.2, this will include a Finished and ChangeCi pher Spec
message. For TLS1.3, there are not TLS records generated.

0 The service base64 encodes the TLS flight 2 response records and
sends themin the response to the client

For TLS 1.2:

200 K
Content - Type: application/atls

{

"session": "<session-string>",
"records": "<base64 encoded flight 2 response>"

}
For TLS1. 3:

200 K
Content - Type: application/atls

"session": "<session-string>"

}

0 The client passes the service response to its TLS session

If there are TLS records included in the response fromthe service,
the client decodes the received base64 encoded "records" and passes
themto its TLS session

7.3. Application Data Exchange

Application data is exchanged between the client and service inside
the TLS tunnel using exactly the sane JSON transport payl oad. When
the client has data to send to the service, it encrypts the data
using the standard TLS stack methods (e.g. OpenSSL SSL_wite() or
Java SSLEngi ne.wap()), extracts the encrypted TLS records fromthe
bottom of the TLS stack, and sends themas in the JSON "records"
paraneter to the service. The service injects the TLS records into
its stack and reads the decrypted data fromthe top of its stack

Friel, et al. Expires May 3, 2018 [Page 14]

Internet-Draft ATLS Cct ober 2017

8.

10.

11.

12.

12.

RTT Consi der ati ons

The nunber of RTTs that take place when establishing a TLS session
depends on the version of TLS and what capabilities are enabl ed on
the TLS software stack. For exanple, a 0-RTT exchange is possible
with TLSL. 3.

If applications wish to ensure a predictabl e nunber of RTTs when
establishing an application | ayer TLS connection, this nmay be
achi eved by configuring the TLS softwae stack appropriately.
Rel evant configuration paraneters for OpenSSL and Java SunJSSE st acks
are outlined in the appendi x.

| ANA Consi derations
[[TODO - New Content-Type nmust be registered.]]

Security Considerations
[[TODO]]

Appendi x A. TLS Software Stack Configuration
[[EDTOR S NOTE: W could include details here on how TLS stack
configuration items control the nunber of round trips between the
client and server.

And just give two exanples: OpenSSL and Java SunJSSH]]

Appendi x B. Pseudo Code

Thi s appendi x gives both C and Java pseudo code illustrating how to
inject and extract raw TLS records froma TLS software stack. Pl ease
not that this is illustrative, non-functional pseudo code that does

not conpile. Functioning proof-of-concept code is available on the
followi ng public respository [[EDITOR S NOTE: Add the URL here]].

1. B.1 OpenSSL

OpenSSL provides a set of Basic Input/Qutput (BIO APIs that can be
used to build a customtransport |ayer for TLS connections. This
appendi x gi ves pseudo code on how BI O APIs could be used to build a
client application that conpletes a TLS handshake and exchanges
application data with a service.

Friel, et al. Expires May 3, 2018 [Page 15]

Internet-Draft ATLS Cct ober 2017

char i nbound[MAX] ;

char out bound[MAX] ;

int rx_bytes;

SSL_CTX *ctx = SSL_CTX_new);
SSL *ssl = SSL_new(ctXx);

/]l Create in-menory BIGs and plug in to the SSL session
BO* bio_in = BIO newm(BIO s _mem));

BO* bio_out = BIO new(BIO s_nem());

SSL_set _bio(ssl, bio_in, bio_out);

/1 W are a client
SSL_set _connect _state(ssl);

/1l Loop through TLS flights until we are done

do {
/1 Calling SSL _do_handshake() will result in a ful
[l TLS flight being witten to the BI O buffer
SSL_do_handshake(ssl);

/1l Read the client flight that the TLS session
/1l has witten to nenory
Bl O read(bi o_out, outbound, MAX);

/1 POST the outbound bytes to the server using a suitable
/1 function. Lets assume that the server response will be
/1l witten to the "inbound buffer

num byt es = post Tl sRecor ds(out bound, inbound);

/1 Wite the server flight to the nenory BIO so the TLS session
/'l can read it. The next call to SSL_do_handshake() will handle
[l this received server flight

BIO wite(bio_in, inbound, num bytes);

} while (!SSL_is_init_finished(ssl));

/'l Send a message to the server. Calling SSL_wite() will run the
/1 plaintext through the TLS session and wite the encrypted TLS
/'l records to the Bl O buffer

SSL wite(ssl, "Hello Wrld", strlien("Hello World"));

/'l Read the TLS records fromthe BI O buffer and
/1l POST themto the server

Bl O read(bi o_out, outbound, MAX);

num byt es = post Tl sRecor ds(out bound, i nbound);

Friel, et al. Expires May 3, 2018 [Page 16]

Internet-Draft ATLS Cct ober 2017

12.2. B.2 Java JSSE

The Java SSLEngi ne cl ass "enabl es secure conmuni cati ons using
protocol s such as the Secure Sockets Layer (SSL) or |ETF RFC 2246
"Transport Layer Security" (TLS) protocols, but is transport

i ndependent”. This pseudo code illustrates how a server could use
t he SSLEngi ne class to handl e an inbound client TLS flight and
generate an outbound server TLS flight response.

Friel, et al. Expires May 3, 2018 [Page 17]

Internet-Draft ATLS Cct ober 2017

SSLEngi ne ssl Engi ne = SSLCont ext. get Defaul t (). creat eSSLEngi ne();
ssl Engi ne. set Used i ent Mbde(f al se);
ssl Engi ne. begi nHandshake() ;

/1 Lets assune 'inbound has been populated with
/1 the dient 1st Flight
Byt eBuf f er i nbound;

/1 "outbound” wll be populated with the
/1 Server 1st Flight response
Byt eBuf f er out bound;

/| SSLEngi ne handl es one TLS Record per call to unwap().
/1 Loop until the engine is finished unw appi ng.
whi | e (ssl Engi ne. get HandshakeSt at us() ==
HandshakeSt at us. NEED_UNWRAP) {
SSLEngi neResult res = ssl Engi ne. unwr ap(i nbound, outbound);

/'l SSLEngi ne may need additional tasks run

i f (res.getHandshakeSt atus() == NEED TASK) {
Runnabl e run = ssl Engi ne. get Del egat edTask() ;
run.run();

/1 The SSLEngi ne has now finished handling all inbound TLS Records.
/1 Check if it wants to generate outbound TLS Records. SSLEngi ne
/1 generates one TLS Record per call to wap().
/1 Loop until the engine is finished wapping.
whi | e (ssl Engi ne. get HandshakeSt at us() ==
HandshakeSt at us. NEED_WRAP) {
SSLEngi neResult res = ssl Engi ne. w ap(i nbound, outbound);

/1 SSLEngi ne may need additional tasks run
i f (res.getHandshakeStatus() == NEED TASK) {
Runnabl e run = ssl Engi ne. get Del egat edTask() ;
run.run();
}
}

/1 out bound Byt eBuffer now contains a conplete server flight
/1 containing nmultiple TLS Records
/'l Rinse and repeat!

Friel, et al. Expires May 3, 2018 [Page 18]

Internet-Draft ATLS

13. Appendix C. Exanple ATLS Handshake

[[EDITOR S NOTE: For conpl eteness, include a sinple full

Cct ober 2017

TLS

handshake showi ng the B64 encoded flights in JSQN, along with the
HTTP request/response/ headers. And al so the raw hex TLS records

showi ng protocol bits]]
14. Informative References

[I-Dietf-tls-tlsl3]

Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", draft-ietf-tls-tlsl13-21 (work in progress),

July 2017.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246,
DA 10. 17487/ RFC5246, August 2008,
<https://ww. rfc-editor.org/info/rfc5246>.

[RFC5705] Rescorla, E., "Keying Material Exporters for Transport
Layer Security (TLS)", RFC 5705, DA 10.17487/ RFC5705,
March 2010, <https://ww.rfc-editor.org/info/rfc5705>.

[RFC7516] Jones, M and J. Hildebrand, "JSON Wb Encryption (JWE)",

RFC 7516, DO 10. 17487/ RFC7516, My 2015,
<https://www. rfc-editor.org/info/rfc7516>.

[RFC8188] Thonmson, M, "Encrypted Content-Encoding for

RFC 8188, DA 10.17487/ RFC8188, June 2017,
<https://ww. rfc-editor.org/info/rfc8188>.

Aut hors’ Addr esses

Onen Fri el
Ci sco
Emmil: ofriel @i sco.com

Ri chard Bar nes
Ci sco

Email: rlb@ pv. sx

Friel, et al. Expires May 3, 2018

HTTP",

[Page 19]

Internet-Draft ATLS Cct ober 2017
Max Pritikin
Ci sco

Enmai |l : pritikin@isco.com

Friel, et al. Expires May 3, 2018 [Page 20]

