
Network Working Group O. Friel
Internet-Draft R. Barnes
Intended status: Standards Track M. Pritikin
Expires: May 3, 2018 Cisco
 October 30, 2017

 Application-Layer TLS
 draft-friel-tls-over-http-00

Abstract

 Many clients need to establish secure connections to application
 services but face challenges establishing these connections due to
 the presence of middleboxes that terminate TLS connections from the
 client and restablish new TLS connections to the service. This
 document defines a mechanism for transporting TLS records in HTTP
 message bodies between clients and services. This enables clients
 and services to establish secure connections using TLS at the
 application layer, and treat any middleboxes that are intercepting
 traffic at the network layer as untrusted transport. In short, this
 mechanism moves the TLS handshake up the OSI stack to the application
 layer.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Friel, et al. Expires May 3, 2018 [Page 1]

Internet-Draft ATLS October 2017

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. ATLS Transport Goals . 3
 4. Architecture Overview . 4
 4.1. Network Architecture 4
 4.2. Application Architecture 5
 4.3. Application Arthiecture Benefits 6
 4.4. Implementation . 6
 5. ATLS Overview . 6
 5.1. TLS Connections . 7
 5.2. Protocol Introduction 7
 5.3. TLS Session Tracking 8
 5.4. Upgrade to Websocket 8
 5.5. Service Container Affinity 8
 5.6. Keying Material Exporting 8
 6. Protocol Details . 9
 6.1. Message Body . 9
 6.2. HTTP Content-Type . 9
 6.3. Client Requests . 9
 6.4. Server Responses . 10
 7. ATLS Session Establishment 10
 7.1. ATLS Handshake Message Sequence Flow 11
 7.2. Detailed ATLS Handshake 12
 7.3. Application Data Exchange 14
 8. RTT Considerations . 15
 9. IANA Considerations . 15
 10. Security Considerations 15
 11. Appendix A. TLS Software Stack Configuration 15
 12. Appendix B. Pseudo Code 15
 12.1. B.1 OpenSSL . 15
 12.2. B.2 Java JSSE . 17
 13. Appendix C. Example ATLS Handshake 19
 14. Informative References 19
 Authors’ Addresses . 19

Friel, et al. Expires May 3, 2018 [Page 2]

Internet-Draft ATLS October 2017

1. Introduction

 There are far more classes of clients being deployed on today’s
 networks than at any time previously. This poses challenges for
 network administators who need to mange their network and the clients
 connecting to their network, and poses challenges for client vendors
 and client software developers who must ensure that their clients can
 connect to all required services.

 One common example is where a client is deployed on a local domain
 network that protects its perimeter using a TLS terminating
 middlebox, and the client needs to establish a secure connection to a
 service in a different network via the middlebox. Traditionally,
 this has been enabled by the network administrator deploying the
 necessary certificate authority trusted roots on the client. This
 can be achieved at scale using standard tools that enable the
 administrator to automatically push trusted roots out to all client
 machines in the network from a centralised domain controller. This
 works for for personal computers, laptops and servers running
 standard Operating Systems that can be centrally managed. This
 client management process breaks for multilpe classes of clients that
 are being deployed today, there is no standard mechanism for
 configuring trusted roots on these clients, and there is no standard
 mechaism for these clients to securely traverse middleboxes.

 The TLS over HTTP mechanism defined in this document enables clients
 to traverse middleboxes that restrict communications to HTTP traffic
 they have inserted themselves into, and establish secure connections
 to services across network domain boundaries.

2. Terminology

 TLS over HTTP is referred to as ATLS throughout this document i.e.
 "Application Layer TLS".

3. ATLS Transport Goals

 The high level goals driving the design of this mechanism are:

 o reuse existing TLS specifications [RFC5246] [I-D.ietf-tls-tls13]
 as is without requiring any protocol changes

 o work with all versions of TLS

 o do not require any changes to current TLS software stacks

 o do not mandate constraints on how the TLS stack is configured or
 used

Friel, et al. Expires May 3, 2018 [Page 3]

Internet-Draft ATLS October 2017

 o be forward compatible with future TLS versions

 o work with both HTTP and HTTPS transport

 o avoid introducing TLS protocol handling logic or semantics into
 the HTTP application layer i.e. TLS protocol knowledge and logic
 is handled by the TLS stack, HTTP is just a dumb transport

 o ensure the client and server software implementations are as
 simple as possible

4. Architecture Overview

4.1. Network Architecture

 A typical network deployment is illustrated in Figure 1. It shows a
 client connecting to a service via a middlebox. It also shows a TLS
 terminator deployed in front of the service. The client establishes
 a transport layer TLS connection with the middlebox (C->M TLS), the
 middlebox in turn opens a transport layer TLS connection with the TLS
 terminator deployed in front of the service (M->T TLS). The client
 can ignore any certificate validation errors when it connects to the
 middlebox. HTTP messages are transported over this layer between the
 client and the service. Finally, application layer TLS messages are
 exchanged inside the HTTP message bodies in order to establish an
 end-to-end TLS session between the client and the service (C->S TLS).

 +----------+ +----------+
 | App Data | | App Data |
 +----------+ +----------+ +----------+
 | C->S TLS | | C->S TLS | | App Data |
 +----------+ +----------+ +----------+
 | HTTP | | HTTP | | C->S TLS |
 +----------+ +----------+ +----------+
 | C->M TLS | | M->T TLS | | HTTP |
 +----------+ +----------+ +----------+
 | TCP | | TCP | | TCP |
 +----------+ +----------+ +----------+

 +--------+ +-----------+ +----------------+ +---------+
 | Client |----->| Middlebox |----->| TLS Terminator |---->| Service |
 +--------+ +-----------+ +----------------+ +---------+
 ^ ^
 | |
 +--------------Client to Service TLS Connection-------------+

 Figure 1: Network Architecture

Friel, et al. Expires May 3, 2018 [Page 4]

Internet-Draft ATLS October 2017

4.2. Application Architecture

 TLS software stacks allow application developers to ’unplug’ the
 default network socket transport layer and read and write TLS records
 directly from byte buffers. This enables application developers to
 create application layer TLS sessions, extract the raw TLS record
 bytes from the bottom of the TLS stack, and transport these bytes
 over any suitable transport. The TLS software stacks can generate
 byte streams of full TLS flights which may include multiple TLS
 records. This is illustrated in Figure 2 below.

 +------------+ +---------+
 Handshake Records | | Handshake Records | |
 ------------------->| TLS |------------------->| |
 | | | Byte |
 Unencrypted Data | Software | Encrypted Data | |
 ------------------->| |------------------->| Buffers |
 | Stack | | |
 Encrypted Data | | Unencrypted Data | |
 ------------------->| |------------------->| |
 + -----------+ +---------+

 Figure 2: TLS Stack Interfaces

 These TLS software stack APIs enable application developers to build
 the software architecture illustrated in Figure 3. The application
 creates and interacts with an application layer TLS session in order
 to generate and consume raw TLS records. The application transports
 these raw TLS records inside HTTP message bodies using a standard
 HTTP stack. The HTTP stack may in turn use either TLS or TCP
 transport to comunicate with the peer. The application layer TLS
 session and network layer TLS session can both leverage a shared,
 common TLS software stack. This high level architecture is
 applicable to both clients and services.

Friel, et al. Expires May 3, 2018 [Page 5]

Internet-Draft ATLS October 2017

 +-------------+
 | | App
 | | Data +---------+
 | Application |<------->| App | +---------+
 | | TLS | TLS |--->| TLS |
 | | Records | Session | | Stack |
 | +--->|<------->| | +---------+
 | | | +---------+ ^
 | | | |
 | | | JSON +-------+ +-------------+ +-----------+
 | | | Payload | HTTP | | Transport | | TCP/IP |
 | +--->|<------->| Stack |--->| TLS Session |--->| Transport |
 +-------------+ +-------+ +-------------+ +-----------+

 Figure 3: Application Architecture

4.3. Application Arthiecture Benefits

 There are several benefits to using a standard TLS software stack to
 establish an application layer secure communications channel between
 a client and a service. These include:

 o no need to define a new cryptographic negotiation and exchange
 protocol beween client and service

 o automatically benefit from new cipher suites by simply upgrading
 the TLS software stack

 o automaticaly benefit from new features, bugfixes, etc. in TLS
 software stack upgrades

4.4. Implementation

 Pseudo code illustrating how to read and write TLS records directly
 from byte buffers using both OpenSSL and Java JSSE is given in the
 appendices.

5. ATLS Overview

 The assumption is that the client will establish a transport layer
 connection to the server for exchange of HTTP messages. The
 underlying transport layer connection could be over TCP or TLS. The
 client will then establish an application layer TLS connection with
 the server by exchanging TLS records with the server inside HTTP
 message requests and responses.

Friel, et al. Expires May 3, 2018 [Page 6]

Internet-Draft ATLS October 2017

5.1. TLS Connections

 If the underlying transport layer connection is TLS, this means that
 the client will establish two independent TLS connections:

 o one at the transport layer which could be directly with the
 service or could be with a middlebox

 o one at the application layer which will be with the service

 As an optimisation, clients may choose to only use ATLS as a fallback
 mechanism if certificate validation fails on the transport layer TLS
 connection to the service. For the purposes of establishing a secure
 connection with the service, the client does not need to perform any
 certificate checks or validation on the transport layer TLS
 connection.

 Similarly, the service may also establish two independent TLS
 connections:

 o one at the transport layer which could be directly with the client
 or could be with a middlebox

 o one at the application layer which will be with the client

 Once the application layer TLS connection is estabilshed, the client
 may report to the service the TLS certificates that where presented
 by the network layer TLS connection but this is application specific
 behaviour and outside the scope of this specification.

5.2. Protocol Introduction

 All application TLS records are transported as base64 encoded
 payloads inside JSON message bodies over HTTP transport. Each
 payload contains a full TLS flight made up of one or more TLS
 records.

 The client sends all application TLS records to the server in JSON
 message bodies in POST requests.

 The server sends all TLS records to the client in JSON message bodies
 in 200 OK responses to the POST requests.

 No constraints are placed on the ContentType contained within the
 transported TLS records. The TLS records may contain handshake,
 application_data, alert or change_cipher_spec messages. If new
 ContentType messages are defined in future TLS versions, these may
 also be transported using this protocol.

Friel, et al. Expires May 3, 2018 [Page 7]

Internet-Draft ATLS October 2017

 If the server is able to handle the application layer TLS records
 included in the request, the server always responds with a 200 OK and
 includes any application TLS records in the message body. The server
 does not, for example, parse the TLS records generated by its TLS
 software stack for an AlertDescription and attempt to map this to a
 suitable HTTP error response code.

 The server only responds with a non-200 OK message if a server error
 occurrs and it is not capable of handling the application layer TLS
 message received from the client.

5.3. TLS Session Tracking

 The service needs to track multiple client application layer TLS
 sessions so that it can collerate TLS records received in HTTP
 message bodies with the appropriate TLS session. It does this by
 inclusion of an explicit session identifier in the JSON message body.

5.4. Upgrade to Websocket

 The HTTP connection between the client and the service may be
 upgraded to a websocket if required. This would allow a server to
 send a TLS close request, or any application data, asynchronously to
 the client. Note that for the majority of use cases, there will be
 no need to open a websocket between the client and service.

5.5. Service Container Affinity

 Application services are typically distributed across multiple
 containers and virtual machines. As TLS is stateful, it must be
 ensured that sequences of TLS messages are handled appropriately by
 the service deployment and the service execution engine has access to
 all necessary state information. This is explicilty outside the
 scope of this specification as there are multiple well defined
 mechanisms for enabling this.

5.6. Keying Material Exporting

 This specification does not require, or preclude, the use of
 [RFC5705]. When the client and service applications detect that the
 ATLS session is established, the application may use the key exporter
 functions of the TLS stack to derive shared keys between client and
 service. The client and service may then use these shared keys to
 establish an independent cryptographic context and exchange data
 using any suitable mechanism such as JSON Web Encryption [RFC7516] or
 Encrypted Content-Encoding for HTTP [RFC8188].

Friel, et al. Expires May 3, 2018 [Page 8]

Internet-Draft ATLS October 2017

6. Protocol Details

6.1. Message Body

 All message bodies are JSON bodies containing one or two parameters:

 {
 "session": "<session-string>",
 "records": "<base64 encoded TLS records>"
 }

 The following two parameters are defined:

 session: This is set by the service and is used to correlate requests
 across multiple client sessions. This parameter is included in all
 messages apart from the first first message sent from the client to
 the service. When a client sends the first request to establish an
 ATLS session with a service, it MUST omit this parameter. When a
 service handles the first request from a client (and that request
 will include the ClientHello), and the service creates an internal
 TLS session object, it MUST return a server-generated "<session-
 string>" to the client. The client MUST include that "<session-
 string>" in all subsequent messages to the server. If the service is
 unable to find a TLS session that correlates with the "<session-
 string>" that a client specifies, the server MUST return 422
 Unprocessable Entity.

 records: This parameter is used to transport the base64 encoded TLS
 records that the client and service applications retrieve from their
 TLS stack. This parameter is sent in all requests from the client to
 the service. This parameter may not necessarily be sent in all
 response messages from the service to the client if the service has
 no TLS records to send. This can happen with a TLS1.3 handshake.

6.2. HTTP Content-Type

 A new HTTP Content-Type is defined:

 Content-Type: application/atls+json

6.3. Client Requests

 When a client has base64 encoded TLS records to send to a service, it
 will include the previously received "<session-string>" in the
 request, or else omit this field for the very first handshake
 message, and send the following request to the service:

Friel, et al. Expires May 3, 2018 [Page 9]

Internet-Draft ATLS October 2017

 POST /atls
 Content-Type: application/atls+json

 {
 "session": "<session-string>",
 "records": "<base64 encoded TLS records>"
 }

6.4. Server Responses

 When a service has processed the TLS records received from a client
 and has generated TLS records to reply with, it will send the
 following reply to the client:

 200 OK
 Content-Type: application/atls+json

 {
 "session": "<session-string>",
 "records": "<base64 encoded TLS records>"
 }

 The server MUST respond with one of the following status codes:

 200 OK: The server was able to successfully parse the request and
 process the TLS records using its TLS software stack.

 400 Bad Request: The client’s request did not contain a JSON object
 of the form specified above.

 422 Unprocessable Entity: The client presented a "<session-string>"
 that the service is unable to correlate that to an existing TLS
 session.

 Note that a status code of 200 OK does not indicate that the TLS
 connection being negotiated is error-free. Alerts produced by TLS
 will be returned in the encoded TLS records. A 200 OK response
 simply indicates that the client should provide the records encoded
 in the response to its TLS stack.

7. ATLS Session Establishment

 This section describes a typical ATLS session establishment flow.

Friel, et al. Expires May 3, 2018 [Page 10]

Internet-Draft ATLS October 2017

7.1. ATLS Handshake Message Sequence Flow

 The following flow chart shows an illustrative message sequence flow
 for the first TLS handshake flight between a client and a service.

 +-------------------------------+ +-------------------------------+
 | Client | | ATLS Server |
 +---------+---+-----+---+-------+ +-------+---+-----+---+---------+
 | TLS | | App | | HTTP | | HTTP | | App | | TLS |
 | Session | +-----+ | Stack | | Stack | +-----+ | Session |
 +---------+ | +-------+ +-------+ | +---------+
 | | | | | |
 | | | HTTP(S) | | |
 | | | Transport | | |
 | Create | |<--------->| | |
 | Session | | | | |
 |<-----------| | | | |
 | Start | | | | |
 | Handshake | | | | |
 |<-----------| | | | |
 | TLS | | | | |
 | Records | Package | | | |
 |----------->| JSON | | | |
 | |-------->| POST | Unwrap | |
 | | |---------->| JSON | Create |
 | | | |--------->| Session |
 | | | | |--------->|
 | | | | | TLS |
 | | | | | Records |
 | | | | |--------->|
 | | | | | TLS |
 | | | | Package | Records |
 | | | | JSON |<---------|
 | | Unwrap | 200 OK |<---------| |
 | TLS | JSON |<----------| | |
 | Records |<--------| | | |
 |<-----------| | | | |
 | TLS | | | | |
 | Records | | | | |
 |----------->| | | | |

 This process repeats until the handshake completes. Once the
 application-layer TLS connection is ready to carry application data,
 the ATLS server relays it to the application server that is
 ultimately serving the rqeuest. That is, a given ATLS server is
 assumed to be connected to a single application endpoint.

Friel, et al. Expires May 3, 2018 [Page 11]

Internet-Draft ATLS October 2017

 +--------+ +--------+
 +--------+ | ATLS | | App |
 | Client | | Server | | Server |
 +--------+ +--------+ +--------+
 | | |
 | TLS Handshake | |
 | (POST/200) | |
 |<----------------->| |
 | | |
 | Application Data | |
 | (POST/200) | Application Data |
 |<----------------->|<------------------>|

7.2. Detailed ATLS Handshake

 o Client establishes transport layer connection with service

 This transport layer session can be established over TCP or TLS. If
 over TLS, the client does not need to perform certificate validation
 on the TLS connection, and may ignore any certificate validation
 errors if it does perform certificate validation.

 o Client creates an application TLS session object

 The client application creates a TLS session object that is not bound
 to any network socket. The client initiates a TLS handshake on the
 session. This will result in the TLS session generating the TLS
 record bytes for a full TLS handshake first flight. This will be a
 ClientHello message. Note that the client application does not
 explicitly know what the contents of the TLS record bytes are.

 o The client base64 encodes the TLS flight 1 records and sends them
 in a HTTP POST to the service

 POST /atls
 Content-Type: application/atls

 {
 "records": "<base64 encoded flight 1>"
 }

 o The service creates a TLS session for handling the request

 The service notes that there is no "session" in the request and
 creates an application TLS session object and a suitable "<session-
 string>" for correlation. The service decodes the received base64
 encoded "records" and passes them to the TLS session. The session
 handles the TLS handshake message and generates a full TLS handshake

Friel, et al. Expires May 3, 2018 [Page 12]

Internet-Draft ATLS October 2017

 response flight. Typically, this will be a ServerHello and
 additional handshake messages that are TLS version dependent. For
 TLS1.3, this may include a Finished message. Note that the service
 application does not explicitly know what the contents of the TLS
 record bytes are.

 o The service base64 encodes the TLS flight 1 response records and
 sends them in the response to the client

 The service MUST include its generated "session".

 200 OK
 Content-Type: application/atls

 {
 "session": "<session-string>",
 "records": "<base64 encoded flight 1 response>"
 }

 o The client passes the service response to its TLS session

 The client decodes the received base64 encoded "records" and passes
 them to the TLS session. The session handles the TLS handshake
 message and generates a full TLS handshake second flight. This will
 be a Finished message, Certificate and CertificateVerify messages if
 required, and additional handshake messages that are TLS version
 dependent.

 o The client base64 encodes the TLS flight 2 records and sends them
 in a HTTP POST to the service

 The client MUST include the "<session-string>" it received from the
 service.

 POST /atls
 Content-Type: application/atls

 {
 "session": "<session-string>",
 "records": "<base64 encoded flight 2>"
 }

 o The service passes the client response to the respective TLS
 session

 The service extracts the "<session-string>" from the request and
 finds the respective application TLS session object. The service
 decodes the received base64 encoded "records" and passes them to the

Friel, et al. Expires May 3, 2018 [Page 13]

Internet-Draft ATLS October 2017

 TLS session. The session handles the TLS handshake message and will
 generates a full TLS handshake response flight where appropriate.
 For TLS1.2, this will include a Finished and ChangeCipherSpec
 message. For TLS1.3, there are not TLS records generated.

 o The service base64 encodes the TLS flight 2 response records and
 sends them in the response to the client

 For TLS 1.2:

 200 OK
 Content-Type: application/atls

 {
 "session": "<session-string>",
 "records": "<base64 encoded flight 2 response>"
 }

 For TLS1.3:

 200 OK
 Content-Type: application/atls

 {
 "session": "<session-string>"
 }

 o The client passes the service response to its TLS session

 If there are TLS records included in the response from the service,
 the client decodes the received base64 encoded "records" and passes
 them to its TLS session.

7.3. Application Data Exchange

 Application data is exchanged between the client and service inside
 the TLS tunnel using exactly the same JSON transport payload. When
 the client has data to send to the service, it encrypts the data
 using the standard TLS stack methods (e.g. OpenSSL SSL_write() or
 Java SSLEngine.wrap()), extracts the encrypted TLS records from the
 bottom of the TLS stack, and sends them as in the JSON "records"
 parameter to the service. The service injects the TLS records into
 its stack and reads the decrypted data from the top of its stack.

Friel, et al. Expires May 3, 2018 [Page 14]

Internet-Draft ATLS October 2017

8. RTT Considerations

 The number of RTTs that take place when establishing a TLS session
 depends on the version of TLS and what capabilities are enabled on
 the TLS software stack. For example, a 0-RTT exchange is possible
 with TLS1.3.

 If applications wish to ensure a predictable number of RTTs when
 establishing an application layer TLS connection, this may be
 achieved by configuring the TLS softwrae stack appropriately.
 Relevant configuration parameters for OpenSSL and Java SunJSSE stacks
 are outlined in the appendix.

9. IANA Considerations

 [[TODO - New Content-Type must be registered.]]

10. Security Considerations

 [[TODO]]

11. Appendix A. TLS Software Stack Configuration

 [[EDITOR’S NOTE: We could include details here on how TLS stack
 configuration items control the number of round trips between the
 client and server.
 And just give two examples: OpenSSL and Java SunJSSE]]

12. Appendix B. Pseudo Code

 This appendix gives both C and Java pseudo code illustrating how to
 inject and extract raw TLS records from a TLS software stack. Please
 not that this is illustrative, non-functional pseudo code that does
 not compile. Functioning proof-of-concept code is available on the
 following public respository [[EDITOR’S NOTE: Add the URL here]].

12.1. B.1 OpenSSL

 OpenSSL provides a set of Basic Input/Output (BIO) APIs that can be
 used to build a custom transport layer for TLS connections. This
 appendix gives pseudo code on how BIO APIs could be used to build a
 client application that completes a TLS handshake and exchanges
 application data with a service.

Friel, et al. Expires May 3, 2018 [Page 15]

Internet-Draft ATLS October 2017

 char inbound[MAX];
 char outbound[MAX];
 int rx_bytes;
 SSL_CTX *ctx = SSL_CTX_new();
 SSL *ssl = SSL_new(ctx);

 // Create in-memory BIOs and plug in to the SSL session
 BOI* bio_in = BIO_new(BIO_s_mem());
 BOI* bio_out = BIO_new(BIO_s_mem());
 SSL_set_bio(ssl, bio_in, bio_out);

 // We are a client
 SSL_set_connect_state(ssl);

 // Loop through TLS flights until we are done
 do {
 // Calling SSL_do_handshake() will result in a full
 // TLS flight being written to the BIO buffer
 SSL_do_handshake(ssl);

 // Read the client flight that the TLS session
 // has written to memory
 BIO_read(bio_out, outbound, MAX);

 // POST the outbound bytes to the server using a suitable
 // function. Lets assume that the server response will be
 // written to the ’inbound’ buffer
 num_bytes = postTlsRecords(outbound, inbound);

 // Write the server flight to the memory BIO so the TLS session
 // can read it. The next call to SSL_do_handshake() will handle
 // this received server flight
 BIO_write(bio_in, inbound, num_bytes);

 } while (!SSL_is_init_finished(ssl));

 // Send a message to the server. Calling SSL_write() will run the
 // plaintext through the TLS session and write the encrypted TLS
 // records to the BIO buffer
 SSL_write(ssl, "Hello World", strlen("Hello World"));

 // Read the TLS records from the BIO buffer and
 // POST them to the server
 BIO_read(bio_out, outbound, MAX);
 num_bytes = postTlsRecords(outbound, inbound);

Friel, et al. Expires May 3, 2018 [Page 16]

Internet-Draft ATLS October 2017

12.2. B.2 Java JSSE

 The Java SSLEngine class "enables secure communications using
 protocols such as the Secure Sockets Layer (SSL) or IETF RFC 2246
 "Transport Layer Security" (TLS) protocols, but is transport
 independent". This pseudo code illustrates how a server could use
 the SSLEngine class to handle an inbound client TLS flight and
 generate an outbound server TLS flight response.

Friel, et al. Expires May 3, 2018 [Page 17]

Internet-Draft ATLS October 2017

 SSLEngine sslEngine = SSLContext.getDefault().createSSLEngine();
 sslEngine.setUseClientMode(false);
 sslEngine.beginHandshake();

 // Lets assume ’inbound’ has been populated with
 // the Client 1st Flight
 ByteBuffer inbound;

 // ’outbound’ will be populated with the
 // Server 1st Flight response
 ByteBuffer outbound;

 // SSLEngine handles one TLS Record per call to unwrap().
 // Loop until the engine is finished unwrapping.
 while (sslEngine.getHandshakeStatus() ==
 HandshakeStatus.NEED_UNWRAP) {
 SSLEngineResult res = sslEngine.unwrap(inbound, outbound);

 // SSLEngine may need additional tasks run
 if (res.getHandshakeStatus() == NEED_TASK) {
 Runnable run = sslEngine.getDelegatedTask();
 run.run();
 }
 }

 // The SSLEngine has now finished handling all inbound TLS Records.
 // Check if it wants to generate outbound TLS Records. SSLEngine
 // generates one TLS Record per call to wrap().
 // Loop until the engine is finished wrapping.
 while (sslEngine.getHandshakeStatus() ==
 HandshakeStatus.NEED_WRAP) {
 SSLEngineResult res = sslEngine.wrap(inbound, outbound);

 // SSLEngine may need additional tasks run
 if (res.getHandshakeStatus() == NEED_TASK) {
 Runnable run = sslEngine.getDelegatedTask();
 run.run();
 }
 }

 // outbound ByteBuffer now contains a complete server flight
 // containing multiple TLS Records
 // Rinse and repeat!

Friel, et al. Expires May 3, 2018 [Page 18]

Internet-Draft ATLS October 2017

13. Appendix C. Example ATLS Handshake

 [[EDITOR’S NOTE: For completeness, include a simple full TLS
 handshake showing the B64 encoded flights in JSON, along with the
 HTTP request/response/headers. And also the raw hex TLS records
 showing protocol bits]]

14. Informative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),
 July 2017.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <https://www.rfc-editor.org/info/rfc7516>.

 [RFC8188] Thomson, M., "Encrypted Content-Encoding for HTTP",
 RFC 8188, DOI 10.17487/RFC8188, June 2017,
 <https://www.rfc-editor.org/info/rfc8188>.

Authors’ Addresses

 Owen Friel
 Cisco

 Email: ofriel@cisco.com

 Richard Barnes
 Cisco

 Email: rlb@ipv.sx

Friel, et al. Expires May 3, 2018 [Page 19]

Internet-Draft ATLS October 2017

 Max Pritikin
 Cisco

 Email: pritikin@cisco.com

Friel, et al. Expires May 3, 2018 [Page 20]

