
Internet Engineering Task Force Baker
Internet-Draft
Intended status: Informational Finzi
Expires: April 25, 2019 TTTech Computertechnik AG
 Frances
 ISAE-SUPAERO
 Kuhn
 CNES
 Lochin
 Mifdaoui
 ISAE-SUPAERO
 October 22, 2018

 Priority Switching Scheduler
 draft-finzi-priority-switching-scheduler-04

Abstract

 We detail the implementation of a network rate scheduler based on
 both a packet-based implementation of the generalized processor
 sharing (GPS) and a strict priority policies. This credit based
 scheduler called Priority Switching Scheduler (PSS), inherits from
 the standard Strict Priority Scheduler (SP) but dynamically changes
 the priority of one or several queues. Usual scheduling
 architectures often combine rate schedulers with SP to implement
 DiffServ service classes. Furthermore, usual implementations of rate
 scheduler schemes (such as WRR, DRR, ...) do not allow to efficiently
 guarantee the capacity dedicated to both AF and DF DiffServ classes
 as they mostly provide soft bounds. This means excessive margin is
 used to ensure the capacity requested and this impacts the number of
 additional users that could be accepted in the network. PSS allows a
 more predictable output rate per traffic class and is a one fit all
 scheme allowing to enable both SP and rate scheduling policies within
 a single algorithm.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Baker, et al. Expires April 25, 2019 [Page 1]

Internet-Draft Priority Switching Scheduler October 2018

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Context and Motivation 2
 1.2. Definitions and Acronyms 3
 1.3. Priority Switching Scheduler in a nutshell 3
 2. Priority Switching Scheduler 5
 2.1. Specification . 5
 2.2. Implementation with three traffic classes and one
 controlled queue . 9
 2.3. Implementation with n controlled queues 10
 3. Usecase: benefit of using PSS in a Diffserv core network . . 12
 3.1. Motivation . 12
 3.2. New service offered 14
 4. Security Considerations 14
 5. Acknowledgements . 15
 6. References . 15
 6.1. Normative References 15
 6.2. Informative References 15
 Authors’ Addresses . 16

1. Introduction

1.1. Context and Motivation

 To enable DiffServ traffic classes and share the capacity offered by
 a link, many schedulers have been developed such as Strict Priority,
 Weighted Fair Queuing, Weighted Round Robin or Deficit Round Robin.

Baker, et al. Expires April 25, 2019 [Page 2]

Internet-Draft Priority Switching Scheduler October 2018

 In the context of a core network router architecture aiming at
 managing various kind of traffic classes, scheduling architectures
 require to combine a Strict Priority (to handle real-time traffic)
 and a rate scheduler (WFQ, WRR, ... to handle non-real time traffic)
 as proposed in [RFC5865]. For all these solutions, the output rate
 of a given queue often depends on the amount of traffic managed by
 other queues. PSS aims at reducing the uncertainty of the output
 rate of selected queues, we call them in the following controlled
 queues. Additionally, compared to previous cited schemes, the
 scheduling scheme proposed is simpler to implement as PSS allows to
 both enable Strict Priority and Fair Queuing services; is more
 flexible following the wide possibilities offered by this setting;
 and does not require a virtual clock as for instance, WFQ.

1.2. Definitions and Acronyms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 o AF: Assured Forwarding;

 o BLS: Burst Limiting Shaper;

 o DRR: Deficit Round Robin

 o DF: Default Forwarding;

 o EF: Expedited Forwarding;

 o PSS: Priority Switching Scheduler;

 o QoS: Quality-of-Service;

 o FQ: Fair Queuing

 o SP: Strict Priority

 o WFQ: Weighted Fair Queuing

 o WRR: Weighted Round Robin

1.3. Priority Switching Scheduler in a nutshell

Baker, et al. Expires April 25, 2019 [Page 3]

Internet-Draft Priority Switching Scheduler October 2018

 | p_low[i] p_high[i] |
 ------|_____________________|
 sets() | ^
 _________|__ |
 PSS controlled | | | | selects()
 queue i ------------>| p[i]= v | |
 | | credit[i]
 . | . | ^
 . | . | | updates()
 . | . | |
 non-active | |------------------> output
 PSS queue j ------------>| p[j] | traffic
 | |
 . | . |
 . | . |
 . | . |
 |____________|
 Priority Scheduler

 Figure 1: PSS in a nutshell

 As illustrated in Figure 1, the principle of PSS is based on the use
 of credit counters (detailed in the following) to change the priority
 of one or several queues. Each controlled queue i is characterized
 by a current priority state p[i], which can takes two priority
 values: {p_high[i], p_low[i]} where p_high[i] the highest priority
 value and p_low[i] the lowest. This idea follows a proposal made by
 the TSN Task group named Burst Limiting Shaper [BLS]. For each
 controlled queue i, each current priority p[i] changes between
 p_low[i] and p_high[i] depending on the associated credit counter
 credit[i]. Then a Priority Scheduler is used for the dequeuing
 process, i.e., among the queues with available traffic, the first
 packet of the queue with the highest priority is dequeued.

 The main idea is that changing the priorities adds fairness to the
 Priority Scheduler. Depending on the credit counter parameters, the
 amount of capacity available to a controlled queue is bounded between
 a minimum and a maximum value. Consequently, good parameterization
 is very important to prevent starvation of lower priority queues.

 The service obtained for the controlled queue with the switching
 priority is more predictable and corresponds to the minimum between a
 desired capacity and the residual capacity left by higher priorities.
 The impact of the input traffic sporadicity from higher classes is
 thus transfered to non-active PSS queues with a lower priority.

Baker, et al. Expires April 25, 2019 [Page 4]

Internet-Draft Priority Switching Scheduler October 2018

 Finally, PSS offers much flexibility as both controlled queues with a
 guaranteed capacity (when two priorities are set) and queues
 scheduled with a simple Priority Scheduler (when only one priority is
 set) can conjointly be enabled.

2. Priority Switching Scheduler

2.1. Specification

 For the sake of clarity and to ease the understanding of the PSS
 algorithm, we consider the case where only one queue is a controlled
 queue. This corresponds to three traffic classes EF, AF and DF where
 AF is the controlled queue as shown in Figure Figure 2.

 queues priority ___
 ________ | \
 EF--->|________|-----{1}----+ \
 | \
 ________ | \
 AF--->|________|-----{2,4}--+ PSS --->
 | /
 ________ | /
 DF--->|________|-----{3}----+ /
 |___/

 Figure 2: PSS with three traffic classes

 As previously explained, the PSS algorithm defines for the controlled
 queue a low priority denoted p_low, and a high priority denoted
 p_high associated to a credit counter denoted credit, which manages
 the priority switching. Considering Figure 2, the priority p[AF] of
 the controlled queue AF will be switched between two priorities where
 p_high[AF] = 2 and p_low[AF] = 4. The generalisation of PSS
 algorithm to n controlled queues is given in Section 2.3.

 Then, each credit counter is defined by:

 o a minimum level: 0;

 o a maximum level: LM;

 o a resume level: LR such as 0 <= LR < LR;

 o a reserved capacity: BW;

 o an idle slope: I_idle = C * BW, where C is the link output
 capacity;

Baker, et al. Expires April 25, 2019 [Page 5]

Internet-Draft Priority Switching Scheduler October 2018

 o a sending slope: I_send = C - I_idle;

 The available capacity (denoted C) is mostly impacted by the
 guaranteed capacity BW. Hence, BW should be set to the desired
 capacity plus a margin taking into account the additional packet due
 to non-preemption as explained below:

 the value of LM can negatively impact on the guaranteed available
 capacity. The maximum level determines the size of the maximum
 sending windows, i.e, the maximum uninterrupted transmission time of
 the controlled queue packets before a priority switching. The impact
 of the non-preemption is as a function of the value of LM. The
 smaller the LM, the larger the impact of the non-preemption is. For
 example, if the number of packets varies between 4 and 5, the
 variation of the output traffic is around 25% (i.e. going from 4 to 5
 corresponds to a 25% increase). If the number of packets sent varies
 between 50 and 51, the variation of the output traffic is around 2%.

 The credit allows to keep track of the packet transmissions.
 However, keeping track the transmission raises an issue in two cases:
 when the credit is saturated at LM or at 0. In both cases, packets
 are transmitted without gained or consumed credit. Nevertheless, the
 resume level can be used to decrease the times when the credit is
 saturated at 0. If the resume level LR is 0, then as soon as the
 credit reaches 0, the priority is switched and the credit saturates
 at 0 due to the non-preemption of the current packet. On the
 contrary, if LR > 0, then during the transmission of the non-
 preempted packet, the credit keeps on decreasing before reaching 0 as
 illustrated in Figure 3.

 Hence, the proposed value for LR is Lmax * BW, with Lmax the maximum
 packet size of the controlled queue. With this value, there is no
 credit saturation at 0 due to non-preemption.

 A similar parameter setting is described in [Globecom17], to
 transform WRR parameter into PSS parameters, also in the case of a
 three classes DiffServ architecture.

 The priority change depends on the credit counter as follows:

 o initially, the credit counter starts at 0;

 o the change of priority p[i] of controlled queue i occurs in two
 cases:

 * if p[i] is currently set to p_high[i] and credit[i] reaches LM;

 * if p[i] is currently set to p_low[i] and credit[i] reaches LR;

Baker, et al. Expires April 25, 2019 [Page 6]

Internet-Draft Priority Switching Scheduler October 2018

 o when a packet of the controlled queue is transmitted, the credit
 increases (is consumed) with a rate I_send, else the credit
 decreases (is gained) with a rate I_idle;

 o when the credit reaches LM, it remains at this level until the end
 of the transmission of the current packet (if any);

 o when the credit reaches LR and the transmission of the current
 packet is finished, in the abscence of new packets to transmit in
 the controlled queue, it keeps decreasing at the rate I_idle until
 it reaches 0. Finally, the credit remains to 0 until the start of
 the transmission of a new packet.

 Figure 3 and Figure 4 give two examples of credit and priority
 changes of a given queue. First, Figure 3 gives an example when the
 controlled queue sends its traffic continuously until the priority
 changes (this traffic is represented with @ below the x-axis of this
 figure). Then, the credit reaches LM and the last packet is
 transmitted although the priority have changed. Other traffic is
 thus sent (represented by o) uninterruptedly until the priority
 changes back. Figure 4 illustrates a more complex behaviour. First,
 this figure shows when a packet with a priority higher than p_high[i]
 is available, this packet is sent before the traffic of queue i.
 Secondly, when no traffic with a priority lower than p_low[i] is
 available, then traffic of queue i can be sent. This highlights the
 non-blocking nature of PSS and that p[i] = p_high[i] (resp. p[i] =
 p_low[i]) does not necessarily mean that traffic of queue i is being
 sent (resp. not being sent).

Baker, et al. Expires April 25, 2019 [Page 7]

Internet-Draft Priority Switching Scheduler October 2018

 ^ credit
 | | |
 | p_high | p_low | p_high
 LM |- - - - -++++++- - - - - - - |- - - -+++
 | +| |+ | +
 |I_send + | | + I_idle | +
 | + | | + | +
 | + | | + | +
 | + | | + | +
 | + | | + | +
 LR | + | | + |+
 0 |-+- - - -|- - |- - - - - - - +- - - - - >
 | | time
 @@@@@@@@@@@@@@@@oooooooooooooo@@@@@@@@@@

 @ controlled queue traffic
 o other traffic

 Figure 3: First example of queue credit evolution and priority
 switching.

 ^ credit
 | |
 | p_high | p_low
 LM + - - - - - - - - - - - -++++ - - - - - - -+
 | +| |+ +
 | ++ + | | + +
 | + | + + | | + +
 | ++ + | + | | +
 | +| + + | | | | |
 | + | + | | | | |
 LR +--+--|-----|----|---|---|--|------|-------
 0 +-+- -| - - |- - |- -|- -|- |- - - |- - - - >
 | | | | | | time
 @@@@@@oooooo@@@@@oooo@@@@@@@@oooooo@@@@@@@

 @ controlled queue traffic
 o other traffic

 Figure 4: Second example of queue credit evolution and priority
 switching.

 Finally, for the dequeuing process, a Priority Scheduler selects the
 appropriate packet using the current priority values. In other
 words, among the queues with packets enqueued, the first packet of
 the queue with the highest priority is dequeued (usual principle of
 SP).

Baker, et al. Expires April 25, 2019 [Page 8]

Internet-Draft Priority Switching Scheduler October 2018

2.2. Implementation with three traffic classes and one controlled queue

 The new dequeuing algorithm is presented in the PSS Algorithm in
 Figure 5 and consists in a modification of the standard SP. The
 credit of the controlled queue and the dequeuing timer denoted
 timerDQ are initialized to zero. The initial priority is set to the
 highest value p_high. First, we compute the difference between the
 current time and the time stored in timerDQ (line #3). The duration
 dtime represents the time elapsed since the last credit update,
 during which no packet from the controlled queue was sent, we call
 this the idle time. Then, if dtime > 0, the credit is updated by
 removing the credit gained during the idle time that just occurred
 (lines #4 and #5). Next, timerDQ is set to the current time to keep
 track of the last time the credit was updated (line #6). If the
 credit reaches LR, the priority changes to its high value (lines #7
 and #8). Then, with the updated priorities, SP algorithm performs as
 usual: each queue is checked for dequeuing, highest priority first
 (lines #12 and #13). When the queue selected is the controlled
 queue, the credit expected to be consumed is added to the credit
 variable (line #16). The time taken for the packet to be dequeued is
 added to the variable timerDQ (line #17) so the transmission time of
 the packet will not be taken into account in the idle time dtime
 (line #3). If the credit reaches LM, the priority changes to its low
 value (lines #18 and #19). Finally, the packet is dequeued (line
 #22).

Baker, et al. Expires April 25, 2019 [Page 9]

Internet-Draft Priority Switching Scheduler October 2018

 Inputs: credit, timerDQ, C, LM, LR, BW, p_high, p_low
 1 currentTime = getCurrentTime()
 3 dtime = currentTime - timerDQ
 4 if dtime > 0 then:
 5 credit = max(credit - dtime * C * BW, 0)
 6 timerDQ = currentTime
 7 if credit < LR and p = p_low then:
 8 p = p_high
 9 end if
 10 end if
 11 end for
 12 for each priority level, highest first do:
 13 if length(queue[i]) > 0 then:
 15 if queue[i] is the controlled queue then:
 16 credit =
 min(LM, credit + size(head(queue[i])) * (1 - BW))
 17 timerDQ = currentTime + size(head(queue[i]))/C
 18 if credit >= LM and p = p_high then:
 19 p = p_low
 20 end if
 21 end if
 22 dequeue(head(queue[i]))
 23 break
 24 end if
 25 end for

 Figure 5: PSS algorithm

 PSS algorithm implements the following functions:

 o getCurrentTime() uses a timer to return the current time;

 o length(q) returns the length of the queue q;

 o head(q) returns the first packet of queue q;

 o size(f) returns the size of packet f;

 o dequeue(f) activates the dequeing event of packet f.

2.3. Implementation with n controlled queues

 The algorithm can be updated to support n controlled queues. In this
 context, the credits of each queue i must be stored in the table
 creditList[i]. Each controlled queue i has its own dequeuing timer
 stored in the table timerDQList[i]. Likewise for each controlled
 queue, LM[i], LR[i], BW[i], p_low[i] and p_high[i] are respectively
 stored in LMList[i], LRList[i], BWList[i], p_lowList[i] and

Baker, et al. Expires April 25, 2019 [Page 10]

Internet-Draft Priority Switching Scheduler October 2018

 p_highList[i]. A controlled queue i is characterized by p_lowList[i]
 > p_highList[i] (as priority 0 is the highest priority for SP). The
 current priority of a controlled queue is stored in p[i]. Each
 controlled queue must have distinct priorities.

 As an example, Figure Figure 6 extends Figure 2 to n controlled
 queues.

 queues prio ___
 ________ | \
 Admitted EF--->|________|-----{1}----+ \
 | \
 ________ | \
 Unadmitted EF--->|________|-----{2}----+ \
 | \
 ________ | \
 AF1-->|________|-----{3,6}--+ PSS --->
 | /
 ________ | /
 AF2-->|________|-----{4,7}--+ /
 | /
 ________ | /
 DF--->|________|-----{5}----+ /
 |___/

 Figure 6: PSS with three traffic classes

Baker, et al. Expires April 25, 2019 [Page 11]

Internet-Draft Priority Switching Scheduler October 2018

 Inputs: creditList[], timerDQList[], C, LMList[], LRList[],
 BWList[],p_highList[], p_lowList[]
 1 for each queue i with p_highList[i] < p_lowList[i] do:
 2 currentTime = getCurrentTime()
 3 dtime = currentTime - timerDQList[i]
 4 if dtime >0 then:
 5 creditList[i] =
 max(creditList[i] - dtime * C * BWList[i], 0)
 6 timerDQList[i] = currentTime
 7 if credit[i] < LRList[i] and p[i] = p_lowList[i] then:
 8 p[i] = p_highList[i]
 9 end if
 10 end if
 11 end for
 12 for each priority level pl, highest first do:
 13 if length(queue(pl)) > 0 then:
 14 i = queue(pl)
 15 if p_highList[i] < p_lowList[i] then:
 16 creditList[i] =
 min(LMList[i],
 creditList[i] + size(head(i)) * (1 - BWList[i]))
 17 timerDQList[i] = currentTime + size(head(i))/C
 18 if creditList[i] >= LMList[i]
 and p[i] = p_highList[i] then:
 19 p[i] = p_lowList[i]
 20 end if
 21 end if
 22 dequeue(head(i))
 23 break
 24 end if
 25 end for

 Figure 7: PSS algorithm

 The general PSS algorithm also implements the following function:

 o queue(pl) returns the queue i associated to priority pl.

3. Usecase: benefit of using PSS in a Diffserv core network

3.1. Motivation

 The DiffServ architecture defined in [RFC4594] and [RFC2475] proposes
 a scalable mean to deliver IP quality of service (QoS) based on
 handling traffic aggregates. This architecture follows the
 philosophy that complexity should be delegated to the network edges
 while simple functionalities should be located in the core network.

Baker, et al. Expires April 25, 2019 [Page 12]

Internet-Draft Priority Switching Scheduler October 2018

 Thus, core devices only perform differentiated aggregate treatments
 based on the marking set by edge devices.

 Keeping aside policing mechanisms that might enable edge devices in
 this architecture, a DiffServ stateless core network is often used to
 differentiate time-constrained UDP traffic (e.g. VoIP or VoD) and
 TCP bulk data transfer from all the remaining best-effort (BE)
 traffic called default traffic (DF). The Expedited Forwarding (EF)
 class is used to carry UDP traffic coming from time-constrained
 applications (VoIP, Command/Control, ...); the Assured Forwarding
 (AF) class deals with elastic traffic as defined in [RFC4594] (data
 transfer, updating process, ...) while all other remaining traffic is
 classified inside the default (DF) best-effort class.

 The first and best service is provided to EF as the priority
 scheduler attributes the highest priority to this class. The second
 service is called assured service and is built on top of the AF class
 where elastic traffic such as TCP traffic, is intended to achieve a
 minimum level of throughput. Usually, the minimum assured throughput
 is given according to a negotiated profile with the client. The
 throughput increases as long as there are available resources and
 decreases when congestion occurs. As a matter of fact, a simple
 priority scheduler is insufficient to implement the AF service. TCP
 traffic increases until reaching the capacity of the bottleneck due
 to its opportunistic nature of fetching the full remaining capacity.
 In particular, this behaviour could lead to starve the DF class.

 To prevent a starvation and ensure to both DF and AF a minimum
 service rate, the router architecture proposed in [RFC5865] uses a
 rate scheduler between AF and DF classes to share the residual
 capacity left by the EF class. Nevertheless, one drawback of using a
 rate scheduler is the high impact of EF traffic on AF and DF.
 Indeed, the residual capacity shared by AF and DF classes is directly
 impacted by the EF traffic variation. As a consequence, the AF and
 DF class services are difficult to predict in terms of available
 capacity and latency. To overcome these limitations and make AF
 service more predictable, we propose here to use the newly defined
 Priority Switching Scheduler (PSS).

 Figure 8 shows an example of the Data Plane Priority core network
 router presented in [RFC5865] modified with a PSS. The EF queues
 have the highest priorities to offer the best service to real-time
 traffic. The priority changes set the AF priorities either higher
 (3,4) or lower (6,7) than CS0 (5), leading to capacity sharing (CS0
 refers to Class Selector codepoints 0 and is usually refered to DF as
 explained in [RFC7657]). Another example with only 3 queues is
 described in [Globecom17]. Thank to the increase predictability, for
 the same minimum guaranteed rate, the PSS reserves a lower percentage

Baker, et al. Expires April 25, 2019 [Page 13]

Internet-Draft Priority Switching Scheduler October 2018

 of the capacity than a rate scheduler. This leaves more remaining
 capacity that can be guaranteed to other users.

 prio ___
 | \
 Admitted EF------{p[AEF] = 1}--------+ \
 | \
 | \
 Unadmitted EF----{p[UEF] = 2}--------+ \
 | \
 | \
 AF1--{p_high[AF1]=3, p_low[AF1]= 6}--+ PSS --->
 | /
 | /
 AF2--{p_high[AF2]=4, p_low[AF2]= 7}--+ /
 | /
 | /
 CS0------------{p[CS0] = 5}----------+ /
 |___/

 Figure 8: PSS applied to Data Plane Priority (we borrow the syntax
 from RCF5865)

3.2. New service offered

 The new service we seek to obtain is:

 o for EF, the full capacity of the output link;

 o for AF the minimum between a desired capacity and the residual
 capacity left by EF;

 o for DF (CS0), the residual capacity left by EF and AF.

 As a result, the AF class has a more predictable available capacity,
 while the unpredictability is reported on the DF class. With good
 parametrization, both classes also have a minimum rate ensured.
 Parameterization and simulations results concerning the use of a
 similar scheme for core network scheduling are available in
 [Globecom17]

4. Security Considerations

 There are no specific security exposure with PSS that would extend
 those inherent in default FIFO queuing or in static priority
 scheduling systems. However, following the DiffServ usecase proposed
 in this memo and in particular the illustration of the integration of
 PSS as a possible implementation of the architecture proposed in

Baker, et al. Expires April 25, 2019 [Page 14]

Internet-Draft Priority Switching Scheduler October 2018

 [RFC5865], most of the security considerations from [RFC5865] and
 more generally from the differentiated services architecture
 described in [RFC2475] still hold.

5. Acknowledgements

 This document was the result of collaboration and discussion among a
 large number of people. In particular the authors wish to thank
 David Black, Ruediger Geib, Vincent Roca for reviewing this draft and
 Victor Perrier for the TUN/TAP implementation of PSS. At last but
 not least, a very special thanks to Fred Baker for his help.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

6.2. Informative References

 [BLS] Gotz, F-J., "Traffic Shaper for Control Data Traffic
 (CDT)", IEEE 802 AVB Meeting , 2012.

 [Globecom17]
 Finzi, A., Lochin, E., Mifdaoui, A., and F. Frances,
 "Improving RFC5865 Core Network Scheduling with a Burst
 Limiting Shaper", Globecom , 2017,
 <http://oatao.univ-toulouse.fr/18448/>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration
 Guidelines for DiffServ Service Classes", RFC 4594,
 DOI 10.17487/RFC4594, August 2006,
 <https://www.rfc-editor.org/info/rfc4594>.

 [RFC5865] Baker, F., Polk, J., and M. Dolly, "A Differentiated
 Services Code Point (DSCP) for Capacity-Admitted Traffic",
 RFC 5865, DOI 10.17487/RFC5865, May 2010,
 <https://www.rfc-editor.org/info/rfc5865>.

Baker, et al. Expires April 25, 2019 [Page 15]

Internet-Draft Priority Switching Scheduler October 2018

 [RFC7657] Black, D., Ed. and P. Jones, "Differentiated Services
 (Diffserv) and Real-Time Communication", RFC 7657,
 DOI 10.17487/RFC7657, November 2015,
 <https://www.rfc-editor.org/info/rfc7657>.

Authors’ Addresses

 Fred Baker
 Santa Barbara, California 93117
 USA

 Email: FredBaker.IETF@gmail.com

 Anais Finzi
 TTTech Computertechnik AG
 Schoenbrunner Strasse 7
 Vienna 1040
 Austria

 Phone: 0043158534340
 Email: anais.finzi@tttech.com

 Fabrice Frances
 ISAE-SUPAERO
 10 Avenue Edouard Belin
 Toulouse 31400
 France

 Email: fabrice.frances@isae-supaero.fr

 Nicolas Kuhn
 CNES
 18 Avenue Edouard Belin
 Toulouse 31400
 France

 Email: nicolas.kuhn@cnes.fr

Baker, et al. Expires April 25, 2019 [Page 16]

Internet-Draft Priority Switching Scheduler October 2018

 Emmanuel Lochin
 ISAE-SUPAERO
 10 Avenue Edouard Belin
 Toulouse 31400
 France

 Phone: 0033561338485
 Email: emmanuel.lochin@isae-supaero.fr

 Ahlem Mifdaoui
 ISAE-SUPAERO
 10 Avenue Edouard Belin
 Toulouse 31400
 France

 Email: ahlem.mifdaoui@isae-supaero.fr

Baker, et al. Expires April 25, 2019 [Page 17]

