IPv6 over Constrained Nod e Networks(6lo) Applicabili ty & Use cases

draft-ietf-6lo-use-cases-03

Y-G. Hong (ETRI), C. Gomez (UPC/i2cat), Y-H. Choi (ETRI), D-Y. Ko (SKTelecom), AR. Sangi(Huaiyin Institute of Technology), T. Aanstoot (Modio AB), S. Chakrabarti

6lo WG Meeting@IETF 100 - Singapore November 16. 2017

History and status

- -Discussed from IETF 89 (Mar. 2014)
- -Initial Document: draft-hong-6lo-use-cases-00 (Oct.17.2015)
 - Presented at IETF-94 6lo WG meeting
- -WG document: draft-ietf-6lo-use-cases-00 (Nov.2.2016)
- -1st revision: draft-ietf-6lo-use-cases-01 (Mar.12.2017)
- -2nd revision: draft-ietf-6lo-use-cases-02 (Jul.3.2017)
- -3rd revision: draft-ietf-6lo-use-cases-03 (Oct.30.2017)

Goal of this document:

Help 6lo/6lowpan stack adaptation by a L2-constrained technology and help a newcomer understand how 6lowpan stack can be applicable in practice. U seful for new adopters of IOT@IETF.

Update based on IETF98 comments

Shortened, cleaned up and focused on Applicability

- -Specified 6lo link layer technologies in a nutshell
 - Added a comparison table on 6lo technology usage
 - LTE-MTC is used as an example of potential 6lowpan L2-candidate
- -Two 6lo deployment scenarios from external SDO
 - Wi-SUN
 - jupiterMesh
- -A section of guidelines for 6lo/6lowpan adaptation is added
- -Moved 6lo use case examples to Appendix (for now)
- -Additional editorial comments
- -Author added
 - Samita Chakrabarti helped with document re-organization

Update based on IETF99 comments

- -Add another Design Space Dimensions
 - Wired vs. Wireless
 - Comment from Kerry
- -Resolve comments from Jianqiang HOU
 - Modify Abstract and section 3.9 to reflect PLC
 - Fix editorial comments
- -Update affiliation of Rashid Sangi
- -Fix editorial typos

6lo Link layer technologies

- -ITU-T G.9959 (Z-wave): RFC 7428
- -Bluetooth Low Energy: RFC 7668
- -DECT-ULE: RFC 8105
- -Master-Slave/Token-Passing: RFC 8163
- -NFC: draft-ietf-6lo-nfc-08
- -PLC: IEEE 1901.2, draft-hou-6lo-plc-02
- -IEEE 802.15.4e: RFC 7554
- -(Potential candidate) LTE MTC: 3GPP TS 36.306 V13.0.0

Comparison across 6lo Link layer tech.

	Z-Wave	BLE	DECT-ULE	MS/TP	NFC	PLC	TSCH
Usage	Home Automation	Interaction with Smart phone	Meter Reading	District Heat- ing	Health care Services	Smart Grid	Industrial Automation
Technology & Subnet	L2-mesh or L3-mesh	Star No mesh	Star No mesh	Bus MS/TP	P2P L2-mesh	Star, Tree, Mesh	Mesh
Mobility Re- qmt	No	Low	No	No	Moderate	No	No
Security Reqmt	High, Privacy re- quired	Partially	High, Privacy re- quired	High, Authen. required	High	High, Encrypt. required	High, Privacy re- quired
Buffering Reqmt	Low	Low	Low	Low	Low	Low	Low
Latency, QoS Reqmt	High	Low	Low	High	High	Low	High
Date Rate	Infrequent	Infrequent	Infrequent	Frequent	Small	Infrequent	Infrequent
RFC # or Draft	RFC 7428	RFC 7668	RFC 8105	RFC 8163	draft-6lo-nfc	draft-hou- 6lo-plc	RFC 7554

Guidelines for adopting IPv6 stack (6lo/6L oWPAN)

- -It targets candidates for new constrained L2 technologies that conside r running modified 6LoWPAN stack
- -The modification of 6LoWPAN stack should be based on the following:
 - Addressing Model
 - MTU Considerations
 - Mesh or L3-Routing
 - Address Assignment
 - Header Compression
 - Security and Encryption
 - Additional processing

6lo Deployment Scenarios: Wi-SUN

-Wi-SUN technology

- Based on the IEEE 802.15.4g standard
- Wi-SUN networks support star and mesh topologies, as well as hybrid star/ mesh deployments
- Wi-SUN networks are deployed on both powered and battery-operated devices
- -Wi-SUN Field Area Network (FAN) technology
 - Cover primarily outdoor networks, and its specification is oriented towards meeting the more rigorous challenges of these environments
 - Adaptation layer based on 6lo and IPv6 network layer are described
- -Wi-SUN usage of 6lo stacks
 - Advanced Metering Infrastructure (AMI)
 - Distribution Automation (DA)

[*. On behalf of Wi-SUN Alliance, Paul Duffy helped to prepare text]

6lo Deployment Scenarios: jupiterMesh

- -jupiterMesh specification is based on
 - PHY layer: IEEE 802.15.4 SUN specification [IEEE 802.15.4-2015]
 - MAC layer: IEEE 802.15.4 TSCH specification
 - Network layer: DHCPv6 [RFC3315], 6lo/6LoPWAN header compression [RFC6282], RPL [RFC6550]
- -jupiterMesh in Smart Grid using 6lo in network layer
 - Multi-hop wireless mesh network specification designed mainly for deplo yment in large geographical areas
 - Each subnet in jupiterMesh is able to cover an entire neighborhood with thousands of nodes consisting of IPv6-enabled routers and end-points
- [*. On behalf of jupiterMesh WG, Michel Veillette and Das Subir provided related text]

Design space dimensions for 6lo use cases

- Deployment/Bootstrapping
- Topology
- L2-Mesh or L3-Mesh
- Multi-link subnet
- Data rate
- Buffering requirements
- Security Requirements
- Mobility across 6lo networks and subnets

- Time synchronization requirements
- Reliability and QoS
- Traffic patterns
- Security Bootstrapping
- Power use strategy
- Update firmware requirements
- Wired vs. Wireless

Design space dimensions - Wired vs. Wireless

-Wired vs. Wireless: Plenty of 6lo link layer technologies are w ireless except MS/TP and PLC. The selection of wired or wirel ess link layer technology is mainly dependent on the require ment of 6lo use cases and the characteristics of wired/wirele ss technologies. For example, some 6lo use cases may requir e easy and quick deployment and some 6lo use cases may re quire continuous source of power.

6lo use cases (1/2)

- -Use case of ITU-T G.9959: Smart Home
 - Example: Use of ITU-T G.9959 for Home Automation
- Use case of Bluetooth LE: Smartphone-Based Interaction with Constrained Devices
 - Example: Use of Bluetooth LE-based Body Area Network for fitness
- -Use case of DECT-ULE: Smart Home
 - Example: use of DECT-ULE for Smart Metering
- -Use case of MS/TP: Management of District Heating
 - Example: use of MS/TP for management of district heating

6lo use cases (2/2)

- -Use case of NFC: Alternative Secure Transfer
 - Example: Use of NFC for Secure Transfer in Healthcare Services with
 - Tele-Assistance
- -Use case of PLC: Smart Grid
 - Example: Use of PLC for Advanced Metering Infrastructure
 - Example: Use of PLC (IEEE1901.1) for WASA in Smart Grid
- -Use case of IEEE 802.15.4e: Industrial Automation
 - Use of IEEE 802.15.4e for P2P communication in closed-loop applic ation

Thanks!!

Questions & Comments