
6TiSCH Minimal Scheduling Function (MSF)
draft-chang-6tisch-msf-00

Tengfei Chang

Malisa Vucinic

Xavi Vilajosana

1

Abstract

This specification defines the 6TiSCH Minimal Scheduling Function

(MSF). This Scheduling Function describes both the behavior of a

node when joining the network, and how the communication schedule is

managed in a distributed fashion. MSF builds upon the 6top Protocol

(6P) and the Minimal Security Framework for 6TiSCH.

2

In a nutshell

1. Start with a single cell
• 6tisch-minimal

2. Perform secure join
• 6tisch-minimal-security

3. Add/delete cells to parent
• 6tisch-6top-protocol

 Completely defined behavior, fully standardized story

3

Interaction with 6TiSCH-minimal

• Frames exchanged over the minimal cell:
1. EBs
2. DIOs
3. Join request/response messages between pledge and JP
4. the first 6P Transaction a node initiates

• Access rules to the minimal cell: cut bandwidth in portions:
• 1/(3(N+1)) for EBs (N= number of neighbors)
• 1/(3(N+1)) for DIOs
• Rest for join and 6P (see above)

• Slotframe organization:
• Slotframe 0 for minimal cell
• Slotframe 1 for cells added by MSF

4

Node Behavior at Boot (1/2)

• Start state
• PSK
• Any other configuration mentioned in minimal-security

• [7-step join]
• End state

• node is synchronized to the network
• node is using the link-layer keying material it learned through the secure joining

process
• node has identified its preferred routing parent
• node has a single dedicated cell to its preferred routing parent
• node is periodically sending DIOs, potentially serving as a router for other nodes'

traffic
• node is periodically sending EBs, potentially serving as a JP for new joining nodes

5

Node Behavior at Boot (2/2)
• Step 1 - Choosing Frequency

• Listen on random frequency

• Step 2 – Receiving Ebs
• Listen for multiple neighbors, shoes one as JP

• Step 3 - Join Request/Response
• First hop over minimal cells, rest over dedicated (same for response)

• Step 4 - Acquiring a RPL rank
• Select preferred parent

• Step 5 - 6P ADD to Preferred Parent
• Single TX|RX|SHARED cell to parent

• Step 6 - Send EBs and DIOs
• Accept children

• Step 7 - Neighbor Polling
• Keep-alive to each neighbor you have cells to every 10s; remove if dead.

did you spot the typo?
6

Dynamic Scheduling (1/4)

• 3 reasons for adding/removing/relocating cells:
• Adapting to Traffic

• Switching Parent

• Handling Schedule Collisions

• 6P carries out the work

7

Dynamic Scheduling (2/4)

• Reason 1/3: Adapting to Traffic
• A node always has at least one cell to preferred parent

• Keep counters to preferred parent:
• NumCellsPassed

• NumCellsUsed

• When NumCellsPassed reaches 16:
• If NumCellsUsed>12, add a cell

• If NumCellsUsed<4, remove a cell

8

Dynamic Scheduling (3/4)

• Reason 2/3: Switching parents
• Count number of cells to old parent

• Schedule the same number to new parent

• Remove cells from old parent

9

Dynamic Scheduling (4/4)

• Reason 3/3: Handling schedule collisions
• Counter for each cell to preferred parent:

• NumTx

• NumTxAck

• When NumTx==256:
• NumTx>>1

• NumTxAck>>1

• Periodically, compare numbers for all cells to parent
• If no roll over yet, abort

• If PDR of one cell <50% of cell with max PDR, relocate

10

Other “details”

• 6P SIGNAL command

• Rules for CellList

• 6P Timeout Value

• Rule for Ordering Cells

• Meaning of the Metadata Field

• 6P Error Handling

• Schedule Inconsistency Handling

11

6TiSCH Simulator Implementation

Code at: https://bitbucket.org/6tisch/simulator/pull-requests/7/implementation-of-msf-according-to-draft

https://bitbucket.org/6tisch/simulator
Study MSF convergence
(join phase not implemented yet)

5 packet bursts at each mote
in the network

Periodic
upstream traffic

50 motes, randomly deployed on 2x2 km area
Each mote has at least 3 neighbors

Simulated 6P signaling

Over 100 000 slotframe cycles simulated!

12

https://bitbucket.org/6tisch/simulator/pull-requests/7/implementation-of-msf-according-to-draft
https://bitbucket.org/6tisch/simulator

MSF OpenWSN Implementation

13

www.openwsn.org, https://github.com/openwsn-berkeley

after 2-week MSF code sprint 35-node deployment (Cortex-M3+AT86RF231)

node rank stable after join 100% end-to-end reliable on most nodes ~1% radio duty cycle

http://www.openwsn.org/
https://github.com/openwsn-berkeley

Conclusion and Future Steps

• Running code: It works!

• Simple to implement

• Broadcast strategy on the minimal cell critical for join phase

• How to set MSF parameters as a function of e.g. latency
requirements, duty cycle?

• Lessons learnt from implementation
• When a schedule inconsistency is detected, the 6P CLEAR Request and

Reponse SHOULD be exchanged on the minimal cell.

• Limit backoff exponent on dedicated cells as only 2 nodes discussing.

• Further experimental benchmarking based on application scenarios

14

