6TiSCH Minimal Scheduling Function (MSF) draft-chang-6tisch-msf-00

Tengfei Chang

Malisa Vucinic

Xavi Vilajosana

Abstract

This specification defines the 6TiSCH Minimal Scheduling Function (MSF). This Scheduling Function describes both the behavior of a node when joining the network, and how the communication schedule is managed in a distributed fashion. MSF builds upon the 6top Protocol (6P) and the Minimal Security Framework for 6TiSCH.

In a nutshell

- 1. Start with a single cell
 - 6tisch-minimal
- 2. Perform secure join
 - 6tisch-minimal-security
- 3. Add/delete cells to parent
 - 6tisch-6top-protocol

→ Completely defined behavior, fully standardized story ☺

Interaction with 6TiSCH-minimal

- Frames exchanged over the minimal cell:
 - 1. EBs
 - 2. DIOs
 - 3. Join request/response messages between pledge and JP
 - 4. the first 6P Transaction a node initiates
- Access rules to the minimal cell: cut bandwidth in portions:
 - 1/(3(N+1)) for EBs (N= number of neighbors)
 - 1/(3(N+1)) for DIOs
 - Rest for join and 6P (see above)
- Slotframe organization:
 - Slotframe 0 for minimal cell
 - Slotframe 1 for cells added by MSF

Node Behavior at Boot (1/2)

- Start state
 - PSK
 - Any other configuration mentioned in minimal-security
- [7-step join]
- End state
 - node is **synchronized** to the network
 - node is using the link-layer keying material it learned through the secure joining process
 - node has identified its **preferred routing parent**
 - node has a single dedicated cell to its preferred routing parent
 - node is periodically sending **DIOs**, potentially serving as a router for other nodes' traffic
 - node is periodically sending **EBs**, potentially serving as a JP for new joining nodes

Node Behavior at Boot (2/2)

- Step 1 Choosing Frequency
 - Listen on random frequency
- Step 2 Receiving Ebs
 - Listen for multiple neighbors, shoes one as JP
- Step 3 Join Request/Response
 - First hop over minimal cells, rest over dedicated (same for response)
- Step 4 Acquiring a RPL rank
 - Select preferred parent
- Step 5 6P ADD to Preferred Parent
 - Single TX | RX | SHARED cell to parent
- Step 6 Send EBs and DIOs
 - Accept children
- Step 7 Neighbor Polling
 - Keep-alive to each neighbor you have cells to every 10s; remove if dead.

Dynamic Scheduling (1/4)

- 3 reasons for adding/removing/relocating cells:
 - Adapting to Traffic
 - Switching Parent
 - Handling Schedule Collisions
- 6P carries out the work

Dynamic Scheduling (2/4)

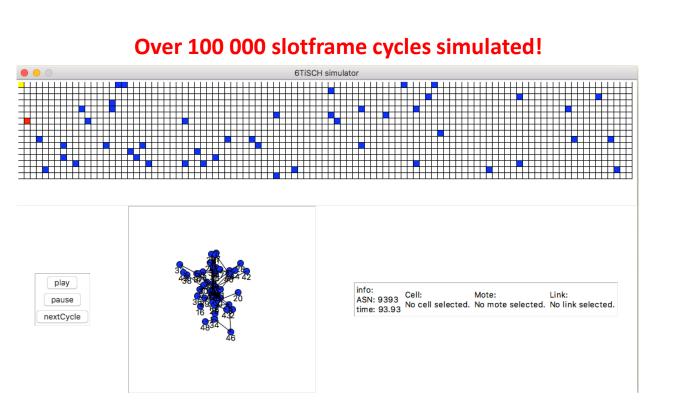
- Reason 1/3: Adapting to Traffic
 - A node <u>always</u> has at least one cell to preferred parent
 - Keep counters to preferred parent:
 - NumCellsPassed
 - NumCellsUsed
 - When NumCellsPassed reaches 16:
 - If NumCellsUsed>12, add a cell
 - If NumCellsUsed<4, remove a cell

Dynamic Scheduling (3/4)

- Reason 2/3: Switching parents
 - Count number of cells to old parent
 - Schedule the same number to new parent
 - Remove cells from old parent

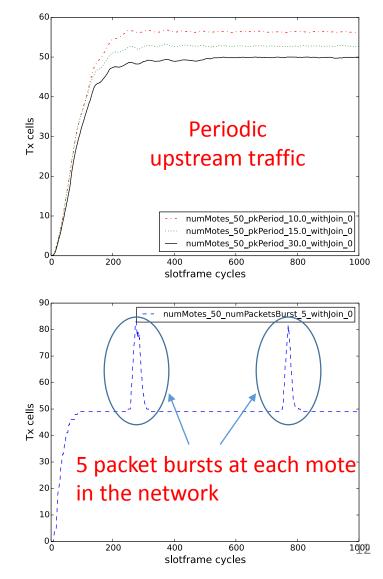
Dynamic Scheduling (4/4)

- Reason 3/3: Handling schedule collisions
 - Counter for each cell to preferred parent:
 - NumTx
 - NumTxAck
 - When NumTx==256:
 - NumTx>>1
 - NumTxAck>>1
 - Periodically, compare numbers for all cells to parent
 - If no roll over yet, abort
 - If PDR of one cell <50% of cell with max PDR, relocate


Other "details"

- 6P SIGNAL command
- Rules for CellList
- 6P Timeout Value
- Rule for Ordering Cells
- Meaning of the Metadata Field
- 6P Error Handling
- Schedule Inconsistency Handling

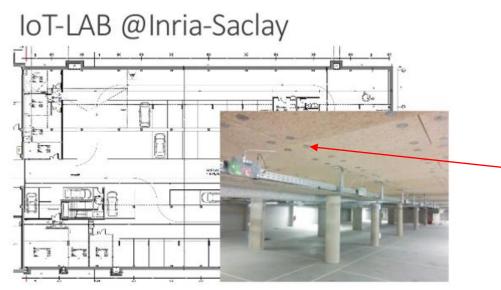
6TiSCH Simulator Implementation

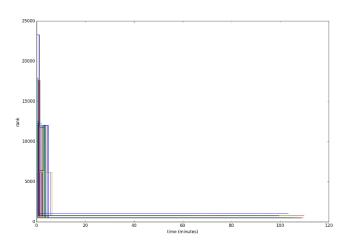

https://bitbucket.org/6tisch/simulator

Study MSF convergence (join phase not implemented yet)

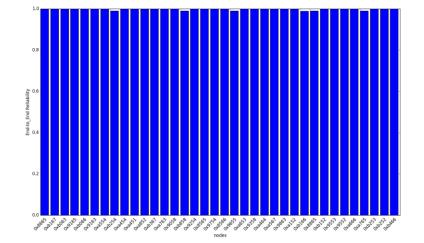
Code at: https://bitbucket.org/6tisch/simulator/pull-requests/7/implementation-of-msf-according-to-draft

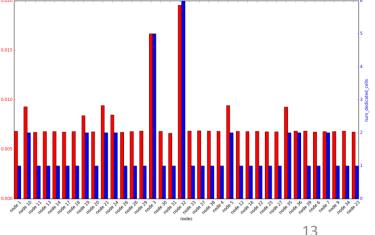
50 motes, randomly deployed on 2x2 km area Each mote has at least 3 neighbors Simulated 6P signaling


MSF OpenWSN Implementation


www.openwsn.org, https://github.com/openwsn-berkeley

10/2017	IETF100 - Acike Board - JIRA					
PW-713 PW-713 PW-713 POUP A A A A A A A A A A A A A A A A A A A	 + PW-714 Error return code handling: retries and clear 	۰	■ ↓ PW-715 MSF housekeeping for relocation	9	 ↓ FW-718 Synchronize to any packet before having a dedicated cell. 	9
Except packet from 6P and join, all boot packet shouldn't be sent until having a dedicated cell.	■ ↓ FW-723 Update neighbors' NumTx and numTxACK only after having a dedicated cell.	1	♥ + FW-710 Update 6P according to latest 6P draft.	9	■ + FW-711 EB, DIO should be sent under 1/(3(k+1)) portion of the bandwidth provided by minimal cell.	9
■ + PW-712 Node chooses randomly frequency to listen EB at beginning.	+ FW-716 Separate the backoff algorithm on minimal shared cell and dedicated cells.	1				


after 2-week MSF code sprint



node rank stable after join

100% end-to-end reliable on most nodes

~1% radio duty cycle

Conclusion and Future Steps

- Running code: It works!
- Simple to implement
- Broadcast strategy on the minimal cell critical for join phase
- How to set MSF parameters as a function of e.g. latency requirements, duty cycle?
- Lessons learnt from implementation
 - When a schedule inconsistency is detected, the 6P CLEAR Request and Reponse SHOULD be exchanged on the minimal cell.
 - Limit backoff exponent on dedicated cells as only 2 nodes discussing.
- Further experimental benchmarking based on application scenarios