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Abstract

This specification defines the 6TiSCH Minimal Scheduling Function
(MSF). This Scheduling Function describes both the behavior of a
node when joining the network, and how the communication schedule is
managed in a distributed fashion. MSF builds upon the 6top Protocol
(6P) and the Minimal Security Framework for 6TiSCH.



In a nutshell

1. Start with a single cell
* 6tisch-minimal

2. Perform secure join
* b6tisch-minimal-security

3. Add/delete cells to parent
* 6tisch-6top-protocol

- Completely defined behavior, fully standardized story ©



Interaction with 6TiISCH-minimal

* Frames exchanged over the minimal cell:

1. EBs

2. DIOs
3. Join request/response messages between pledge and JP

4. the first 6P Transaction a node initiates

e Access rules to the minimal cell: cut bandwidth in portions:
* 1/(3(N+1)) for EBs (N= number of neighbors)
* 1/(3(N+1)) for DIOs
e Rest for join and 6P (see above)

* Slotframe organization:
 Slotframe O for minimal cell
* Slotframe 1 for cells added by MSF



Node Behavior at Boot (1/2)

e Start state
e PSK
* Any other configuration mentioned in minimal-security

e [7-step join]

 End state

* node is synchronized to the network

* node is using the link-layer keying material it learned through the secure joining
process

* node has identified its preferred routing parent
* node has a single dedicated cell to its preferred routing parent

. no?fe is periodically sending DIOs, potentially serving as a router for other nodes'
traffic

* node is periodically sending EBs, potentially serving as a JP for new joining nodes



Node Behavior at Boot (2/2)

Step 1 - Choosing Frequency
e Listen on random frequency

* Step 2 — Receiving Ebs

* Listen for multiple neighbors, shoes one as JP
 Step 3 - Join Request/Response

* First hop over minimal cells, rest over dedicated (same for response)
e Step 4 - Acquiring a RPL rank
* Select preferred parent

e Step 5-6P ADD to Preferred Parent
* Single TX|RX|SHARED cell to parent

e Step 6 - Send EBs and DIOs
* Accept children

e Step 7 - Neighbor Polling

» Keep-alive to each neighbor you have cells to every 10s; remove if dead.

did you spot the typo?



Dynamic Scheduling (1/4)

* 3 reasons for adding/removing/relocating cells:
* Adapting to Traffic
* Switching Parent
* Handling Schedule Collisions

e 6P carries out the work



Dynamic Scheduling (2/4)

* Reason 1/3: Adapting to Traffic
* A node always has at least one cell to preferred parent

» Keep counters to preferred parent:
* NumCellsPassed
* NumCellsUsed

* When NumCellsPassed reaches 16:
* |f NumCellsUsed>12, add a cell
* |If NumCellsUsed<4, remove a cell



Dynamic Scheduling (3/4)

* Reason 2/3: Switching parents
* Count number of cells to old parent
* Schedule the same number to new parent
* Remove cells from old parent



Dynamic Scheduling (4/4)

e Reason 3/3: Handling schedule collisions

e Counter for each cell to preferred parent:

* NumTx
e NumTxAck

e When NumTx==256:
* NumTx>>1
e NumTxAck>>1
* Periodically, compare numbers for all cells to parent
* If noroll over yet, abort
* |f PDR of one cell <50% of cell with max PDR, relocate



Other “details”

* 6P SIGNAL command

* Rules for CellList

* 6P Timeout Value

* Rule for Ordering Cells

* Meaning of the Metadata Field

* 6P Error Handling

* Schedule Inconsistency Handling



6TiISCH Simulator Implementation

: . , Study MSF convergence
https://bitbucket.org/6tisch/simulator

(join phase not implemented yet)
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MSF OpenWSN Implementation

www.openwsn.org, https://github.com/openwsn-berkeley
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Conclusion and Future Steps

* Running code: It works!
e Simple to implement
* Broadcast strategy on the minimal cell critical for join phase

* How to set MISF parameters as a function of e.g. latency
requirements, duty cycle?

* Lessons learnt from implementation

* When a schedule inconsistency is detected, the 6P CLEAR Request and
Reponse SHOULD be exchanged on the minimal cell.

* Limit backoff exponent on dedicated cells as only 2 nodes discussing.

* Further experimental benchmarking based on application scenarios



