6TiSCH Minimal Scheduling Function (MSF)
draft-chang-6tisch-msf-00

Tengfei Chang

Malisa Vucinic

Xavi Vilajosana

Abstract

This specification defines the 6TiSCH Minimal Scheduling Function
(MSF). This Scheduling Function describes both the behavior of a
node when joining the network, and how the communication schedule is
managed in a distributed fashion. MSF builds upon the 6top Protocol
(6P) and the Minimal Security Framework for 6TiSCH.

In a nutshell

1. Start with a single cell
* 6tisch-minimal

2. Perform secure join
* b6tisch-minimal-security

3. Add/delete cells to parent
* 6tisch-6top-protocol

- Completely defined behavior, fully standardized story ©

Interaction with 6TiISCH-minimal

* Frames exchanged over the minimal cell:

1. EBs

2. DIOs
3. Join request/response messages between pledge and JP

4. the first 6P Transaction a node initiates

e Access rules to the minimal cell: cut bandwidth in portions:
* 1/(3(N+1)) for EBs (N= number of neighbors)
* 1/(3(N+1)) for DIOs
e Rest for join and 6P (see above)

* Slotframe organization:
 Slotframe O for minimal cell
* Slotframe 1 for cells added by MSF

Node Behavior at Boot (1/2)

e Start state
e PSK
* Any other configuration mentioned in minimal-security

e [7-step join]

 End state

* node is synchronized to the network

* node is using the link-layer keying material it learned through the secure joining
process

* node has identified its preferred routing parent
* node has a single dedicated cell to its preferred routing parent

. no?fe is periodically sending DIOs, potentially serving as a router for other nodes'
traffic

* node is periodically sending EBs, potentially serving as a JP for new joining nodes

Node Behavior at Boot (2/2)

Step 1 - Choosing Frequency
e Listen on random frequency

* Step 2 — Receiving Ebs

* Listen for multiple neighbors, shoes one as JP
 Step 3 - Join Request/Response

* First hop over minimal cells, rest over dedicated (same for response)
e Step 4 - Acquiring a RPL rank
* Select preferred parent

e Step 5-6P ADD to Preferred Parent
* Single TX|RX|SHARED cell to parent

e Step 6 - Send EBs and DIOs
* Accept children

e Step 7 - Neighbor Polling

» Keep-alive to each neighbor you have cells to every 10s; remove if dead.

did you spot the typo?

Dynamic Scheduling (1/4)

* 3 reasons for adding/removing/relocating cells:
* Adapting to Traffic
* Switching Parent
* Handling Schedule Collisions

e 6P carries out the work

Dynamic Scheduling (2/4)

* Reason 1/3: Adapting to Traffic
* A node always has at least one cell to preferred parent

» Keep counters to preferred parent:
* NumCellsPassed
* NumCellsUsed

* When NumCellsPassed reaches 16:
* |f NumCellsUsed>12, add a cell
* |If NumCellsUsed<4, remove a cell

Dynamic Scheduling (3/4)

* Reason 2/3: Switching parents
* Count number of cells to old parent
* Schedule the same number to new parent
* Remove cells from old parent

Dynamic Scheduling (4/4)

e Reason 3/3: Handling schedule collisions

e Counter for each cell to preferred parent:

* NumTx
e NumTxAck

e When NumTx==256:
* NumTx>>1
e NumTxAck>>1
* Periodically, compare numbers for all cells to parent
* If noroll over yet, abort
* |f PDR of one cell <50% of cell with max PDR, relocate

Other “details”

* 6P SIGNAL command

* Rules for CellList

* 6P Timeout Value

* Rule for Ordering Cells

* Meaning of the Metadata Field

* 6P Error Handling

* Schedule Inconsistency Handling

6TiISCH Simulator Implementation

: . , Study MSF convergence
https://bitbucket.org/6tisch/simulator

(join phase not implemented yet)

60

50

Over 100 000 slotframe cycles simulated!

[] 6TISCH simulator 40l
e WA REERRREEEEEEEN
] :H H]]] “» . .
T REE-EERaEERE" o N Periodic
| | o 30
. | I v i
| “ | ffi
1] || T !
]'FE:H L e & u il ; upstream trattic
| | 201
BEEE SN g ﬁ.u e 2 e m T
10r ,': --- numMotes_50_pkPeriod_10.0_withjoin_0[]
numMotes_50_pkPeriod_15.0_withJoin_0
— numMotes_50_pkPeriod_30.0_withjoin_0
0 ! 1 1 1
0 200 400 600 800 1000
slotframe cycles
play - 90 T T T
pause :‘;‘;": 9393 Celk Mote: Link: - numMotesfSOinumPacketswsiwithjoinio|
N No cell selected. Mo mote selected. Mo link selected. |
time: 93.93 80
nextCycle
70}

wn L - “ o i
6 -

(& 1]

x

g 40p) E

Code at: https://bitbucket.org/6tisch/simulator/pull-requests/7/implementation-of-msf-according-to-draft !
¥+ 5 packet bursts at each mote

50 motes, randomly deployed on 2x2 km area 7 in the network
Each mote has at least 3 neighbors “

600 800 1000

Simulated 6P signaling ’ & o e cycles

https://bitbucket.org/6tisch/simulator/pull-requests/7/implementation-of-msf-according-to-draft
https://bitbucket.org/6tisch/simulator

MSF OpenWSN Implementation

www.openwsn.org, https://github.com/openwsn-berkeley

BERKELEY

niazer IETF100. Ake Boars - 584

o ® o 4 ® o ® o]
Remove the old neighbors and issue Error return code handling: retries MSF housekeeping for relocation Synchronize to any packet before

6P Clear when no activity from a and clear having a dedicated cell.

neighbor is detected or the parent ...

Ll D J Ll -+ L) @ & FwTn L)
Except packet from 6P and cjoin, all Update neighbors' NumTx and Update 6P according to latest 6P EB, DIO should be sent under
other packets shouldn't be sent until numTXACK only after having a draft. 1/(3{N+1)) portion of the bandwidth
having a dedicated cell. dedicated cell. provided by minimal cell.

® o:rn ?
Node chooses randomly frequency to Separate the backoff algorithm on
listen EB at beginning. minimal shared cell and dedicated

colls.

¥

after 2-week MSF code sprint 35-node deployment (Cortex-M3+AT86RF231)

Lo 0020 6
25000
5
08
20000 s
.
zo06 rl
15000 z]
a o
2 001 ER
= B &
B wy S g
g 8 E
B 2
& 04 b
10000
:
0.2
5000 B
- 00 N N N
s B % @ PP GO FD DO PGPS DGR D DD G P D FEFFEFFEPSII SIS EFIFFSF TGP IS FF ST
time (minutes) o Ll g e e nedes

- 13
node rank stable after join 100% end-to-end reliable on most nodes ~1% radio duty cycle

http://www.openwsn.org/
https://github.com/openwsn-berkeley

Conclusion and Future Steps

* Running code: It works!
e Simple to implement
* Broadcast strategy on the minimal cell critical for join phase

* How to set MISF parameters as a function of e.g. latency
requirements, duty cycle?

* Lessons learnt from implementation

* When a schedule inconsistency is detected, the 6P CLEAR Request and
Reponse SHOULD be exchanged on the minimal cell.

* Limit backoff exponent on dedicated cells as only 2 nodes discussing.

* Further experimental benchmarking based on application scenarios

