
IETF-100

ACME Token Identifier and Challenges

 draft-barnes-acme-token-challenge-00
draft-barnes-acme-service-provider-code-00

draft-ietf-acme-service-provide-02

mbarnes@iconectiv.com

November 13, 2017

Overview
• Feedback @ IETF-99 suggested that a more generic token/

challenge mechanism could be used for Service Provider code
token challenge (draft-ietf-acme-service-provider)

• Alternative proposal in draft-peterson-acme-authority-token
(slightly different perspective)

• Minimal changes to existing WG document

2	

Changes to draft-ietf-acme-service-provider-02

• Added text about the lifetime of the service provider code token
• Changed “sub” field in JWT token to be a string and not an

array of strings.

*

3	

draft-barnes-acme-token-challenge
• Mechanism effectively the same as draft-acme-service-provider:

•  Rather than a Service Provider Code, a more generic name is
assigned (“entityCode”*).

•  Acquisition mechanism and validation mechanism follows the same
control flow.

•  The entity requesting a certificate has a relationship with an
administrative authority which assigns a unique code to the entity.

•  The token for the challenge response is issued by the administrative
authority with whom the Certification Authority (CA) also has a trust
relationship.

•  The entity code is included as part of the token that the administrative authority
issues.

* Other terms considered: “serviceCode” or “authCode”

4	

draft-barnes-acme-service-provider-code
• Defines the specific usage of the mechanism defined in draft-

barnes-acme-token-challenge to support Service Provider
codes

•  If generic mechanism progresses, this document is starting
point for updates required for draft-ietf-acme-service-provider

5	

Architecture for token challenge

6	

CA	

“En,ty”	
ACME	 client	

ACME	

Administra,ve	
Authority	

En,ty	 Code	 Token	

6	

HTTPS	

Entity Code Token
JWT Header:
•  alg: Defines the algorithm used in the signature of the token. For Service Provider Code tokens, the algorithm

MUST be "ES256”.

•  typ: Set to standard "JWT" value.

•  x5u: Defines the URL of the certificate of the STI-PA Administrative Authority validating the token.

JWT Payload:
•  sub (*) Entity code token value being validated in the form of an ASCII string.

•  iat: DateTime value of the time and date the token was issued.

•  nbf: DateTime value of the starting time and date that the token is valid.

•  exp: DateTime value of the ending time and date that the token expires.

•  fingerprint: : (Certificate) key fingerprint of the ACME credentials the Entity used to create an account with the
CA.

“fingerprint” is of the form:
base64url(JWK_Thumbprint(accountKey))
* Changed from array of strings to a single string (sufficient for ATIS-1000080)

7	

STI-PA Account Setup, SPC Token Acquisition, ACME Acct Registration

Certificate Acquisition

Discussion points

1.  Identifier defined in draft-peterson-acme-authority-token introduces a

slightly different model:
•  Token relates to authority and not specific entity/service provider to whom code/token

are assigned.
•  An authority would assign unique tokens to unique entities for which it has assigned a

unique identifier.
2.  STIR TNAuthList includes both TNs and Service Provider Codes

•  Service Provider codes are significantly different in structure and use than TNs
3.  Challenge type is no longer specific to Service Provider Codes

•  Fairly simple approach but genericity requires consideration of other practical use
cases prior to publication

•  Could could slow down progression of this document (implementations already done and
underway using service provider code)

10	

