
draft-eckert-anima-grasp-dnssd-00

IETF’100	Singapore,	November	2017

Toerless	Eckert,	Huawei	(Futurewei Technologies	USA)
tte+ietf@cs.fau.de

Scope	/	Goals
• Proposed	as	additional	(milestone)	doc	for	existing	ANI	charter

• Goal	of	ANI	was	to	reuse/combine	existing	technologies
• Q:	Why	do	we	not	use	DNS-SD	for	service	discovery	?	But	instead	GRASP	?
• A	(author):	GRASP	is	intended	to	be	new	transport	for	DNS-SD	compatible	service	discovery
• ...	But	we	did	not	finish	writing	up	how	to	do	it	across	that	transport	->	this	work

• Specific	ANI	use-cases
• Announce/discovery	of	EST	server	for	Cert	renewal	(ACP	draft)
• Announce/discovery	of	BRSKI	server	(registrar)	for	bootstrap	(BRSKI	draft)
• Announce/discovery	of	NOC	services	(stable	connectivity	draft)

• What	is	missing	then	with	existing	GRASP	definitions	for	DNS-SD	like	services	?
• GRASP	can	not	use	existing	IANA	service-names.

• Those	exist	for	e.g.:	EST,	BRSKI	(and	many	services	to	of	interest	for	stable	connectivity).
• No	need	to	reinvent	new	names	for	GRASP	?

• No	definitions	how	multiple	GRASP	objectives	could	share	common	attributes
• E.g.:	DNS-SD	style	priority/weight	for	service	selection
• How	to	indicate	if	locators	are	reachable	via	ACP	or	data	plane
• How	to	selected	“closest”	(distance	based)	server	(“roughly	possible”	only	with	M_DISCOVERY)

Strategy
• Separate	document:

• Remove	all	complex	service	discovery	details	from	ACP/BRSKI.
• Document	intended	to	“update”	BRSKI	/	ACP	RFCs	and	be	backward	compatible.
• One	“mandatory”	element	to	avoid	duplication	of	administrative	work:

• Objective	names	for	IANA	service	names:	“SRV.<service-name>”
• <service-name>	registered	according	to	RFC6335	(service	name	registration)
• Addtl.	Registration	via	GRASP	registry	desirable	for	new	services
• mDNS<->GRASP	gateway	for	existing	DNS-SD	services.

• Encoding	of	services	params via	GRASP	objective-value	(“payload”)
• No	GRASP	header	extensions	==	avoid	incompatibility,	protocol	update….
• Encoding	definitions	extensible	/	re-useable	bejond services

• Support	future	common	cross-GRASP-objective	parameters
• Example:	original-hop-count	(to	measure	distance	from	sender)

From	DNS-SD	to	GRASP
<service>.<prot>.<domain> PTR <instance>.<service>.<prot>.<domain> ! <service> = RFC6335 service-name

printer._tcp PTR myprinter1.printer._tcp ! Service-instance-names allow

PTR yourprinter2.printer._tcp ! human selection of desired

PTR ourprinter3.printer._tcp ! Instance of a service

<instance>.<service>.<prot> SRV <prio> <weight> <port> <host-name> ! <prio> <weight> - load balancing

TXT key1=value1; key2=value2; . . . ! Service specific params

<host-name> A/AAAA <IPv4-address>/<IPv6-address>

• DNS-SD	uses	DNS	RRs	types	to	encode	desired	information
• No	need	to	inherit	unnecessary	DNS	complexities	(RR	type	structure)	into	GRASP	– just	the	service	information!
• But	want	to	be	able	to	support	gateways	converting	GRASP<->DNS	and	common	high-level	service	announce/discover	API

• Service	instance	names
• Browsing	by	service	names	when	client	is	not	human	but	ASA	?	More	likely	based	on	distance/weight	and	service	params
• Make	service	instance	names	optional,	but	support	browsing	(“enumeration”)

• Host	names
• GRASP	domains	may	not	have	or	need	host	names,	e.g.:	ACP	!
• Host	names	not	required/used	in	GRASP	service	names
• But	also	provide	(optional)	mechanism	to	look	up	host-names	via	GRASP.

• Missing
• No	common	way	to	express	addresses	in	different	VRFs	(eg:	ACP	vs.	“data-plane”	addresses)
• No	way	to	select	instance	based	on	network	distance	(closer	is	better)	– distance	not	intrinsic	to	unicast	or	mDNS	transport.

GRASP	Service	structure	(CBOR/CDDL)
service-element = {

?(&(private:0) => any), Private parameters not useful for DNS-SD

?(&(msg-type:1 => msg-type),......... Message Purpose: describe/enumerate (-request)

?(&(service:2) => tstr),............. Service Name (“printer“)

*(&(instance:3) => tstr),............. Instance Name („my-kitchen-printer“)

?(&(domain:4) => tstr),............. Empty = .local (e.g.: ACP), else name

?(&(priority:5) => 0..65535),........ As in DNS-SD

?(&(weight:6) => 0..65535),........ As in DNS-SD

*(&(kvpairs:7) => { *(tstr: any) },.. Key Value pairs – as in DNS-SD

?(&(range:8) => 0..255),.......... Controls distance or priority/weight selection

*(&(clocator:9) => clocator),......... GRASP locators with context indicator (“VRF”)

}

clocator = [context, locator-option] Permit locators to be in data plane

context = tstr Empty: ACP, „0“ = „VRF0“, else name of VRF

locator-option = <unchanged> from GRASP specification – addr/port

msg-type = &(describe: 0, describe-request:1, enumerate:2, enumerate-request:3).

GRASP	exchanges:
• GRASP	M_FLOOD	==	unsolicited	announcement	of	objective	==	service	instance	(GRASP	flooded)

• msg-type:	“describe”

• GRASP	M_DISCOVERY	=	find	an	objective	==	service	instance	(GRASP	flooded)
• msg-type:	“describe-request”	
• Reply:	GRASP	M_REQ_SYN	with	msg-type:	“describe”	(unicast)
• Flooding	of	request	stops	at	first	found	objective	providers	(standard	GRASP	behavior)

• Describe/describe-request	also	useable	in	any	unicast	GRASP	negotiations

• Msg-type	“enumerate”,	“enumerate-request”:
• Do	not	provide	clocators of	instances	(as	”describe”	does),	but	only	instance	names	(to	support	“browsing”	as	in	DNS-SD)
• This	is	then	followed	by	a	second	round	of	“describe-request”	– unicasted	to	originator	of	“enumerate”

• Backward	compatibility	with	existing	BRSKI/ACP	definitions:
• GRASP	SRV.<service-name>	objective	without	service-element	in	objective-value	(including	no	objective-value	at	all)
• Same	as	msg-type	“describe”,	clocator is	the	locator	from	the	GRASP	message	header,	weight/priority	at	default	values

Common	objective-value	elements
objective-value /= { 1*elements }

elements //= (@rfcXXXX: { 1*relement })

relement = (relement-codepoint => relement-value)

relement-codepoint = uint

relement-value = any

relement-codepoint //= (&(sender-loop-count:1) => 1..255)

relement-codepoint //= (&(srv-element:2) => service-element)

• If	an	objective	wants	to	use	reuseable elements:
• Objective	value	must	be	a	map.	Reuseable elements	use	a	well-known	key	in	the	map	(“rfcXXXX”)

• Reuseable elements	have	IANA	assigned	codepoint (and	sepcification)

• Two	reuseable elements	defined:
• Service	element
• Sender-loop-count	(to	enable	distance	from	sender	recognition	in	M_FLOOD	/	M_DISCOVERY)

Name	resolution:

• Objective	names:	NAME.<hostname>

• <hostname>	as	in	DNS	hostnames	(without	domain)
• Uses	same	GRASP	service	structure,	just	most	elements	defined	to	be	unused.
• Allows	to	discover	devices	by	their	name
• Objective	names	of	this	type	are	not	to	be	IANA	registered

• Usefulness:	TBD	(opinions	welcome)
• Very	much	depending	on	size	of	GRASP	domain	and	frequency	of	name	loookups required
• Quite	useful	for	network	administration	diagnostics

• Reminder:	primary	scope	of	GRASP	users	is	network	protocols	/	OAM	,	not	end-user!
• Example:

• Typically	infra	equipment	(router,	switches,..)	in	a	network	have	hostnames.
• These	should	be	in	DNS…	and	they	are..	in	well	organized	networks	(meaning:	quite	often	not	100%	consistent)
• How	do	you	find	a	device	by	name	if	they	are	not	?

