draft-eckert-anima-grasp-dnsssd-00

IETF’100 Singapore, November 2017

Toerless Eckert, Huawei (Futurewei Technologies USA)
tte+ietf@cs.fau.de
Scope / Goals

• Proposed as additional (milestone) doc for existing ANI charter
 • Goal of ANI was to reuse/combine existing technologies
 • Q: Why do we not use DNS-SD for service discovery? But instead GRASP?
 • A (author): GRASP is intended to be new transport for DNS-SD compatible service discovery
 • ... But we did not finish writing up how to do it across that transport -> this work
• Specific ANI use-cases
 • Announce/discovery of EST server for Cert renewal (ACP draft)
 • Announce/discovery of BRSKI server (registrar) for bootstrap (BRSKI draft)
 • Announce/discovery of NOC services (stable connectivity draft)

• What is missing then with existing GRASP definitions for DNS-SD like services?
 • GRASP can not use existing IANA service-names.
 • Those exist for e.g.: EST, BRSKI (and many services to of interest for stable connectivity).
 • No need to reinvent new names for GRASP?
 • No definitions how multiple GRASP objectives could share common attributes
 • E.g.: DNS-SD style priority/weight for service selection
 • How to indicate if locators are reachable via ACP or data plane
 • How to selected “closest” (distance based) server (“roughly possible” only with M_DISCOVERY)
Strategy

• Separate document:
 • Remove all complex service discovery details from ACP/BRSKI.
 • Document intended to “update” BRSKI / ACP RFCs and be backward compatible.
 • One “mandatory” element to avoid duplication of administrative work:

• Objective names for IANA service names: “SRV.<service-name>”
 • <service-name> registered according to RFC6335 (service name registration)
 • Addtl. Registration via GRASP registry desirable for new services
 • mDNS<->GRASP gateway for existing DNS-SD services.

• Encoding of services params via GRASP objective-value (“payload”)
 • No GRASP header extensions == avoid incompatibility, protocol update....
 • Encoding definitions extensible / re-useable beyond services
 • Support future common cross-GRASP-objective parameters
 • Example: original-hop-count (to measure distance from sender)
From DNS-SD to GRASP

- DNS-SD uses DNS RRs types to encode desired information
 - No need to inherit unnecessary DNS complexities (RR type structure) into GRASP – just the service information!
 - But want to be able to support gateways converting GRASP<->DNS and common high-level service announce/discover API

- Service instance names
 - Browsing by service names when client is not human but ASA ? More likely based on distance/weight and service params
 - Make service instance names optional, but support browsing (“enumeration”)

- Host names
 - GRASP domains may not have or need host names, e.g.: ACP !
 - Host names not required/used in GRASP service names
 - But also provide (optional) mechanism to look up host-names via GRASP.

- Missing
 - No common way to express addresses in different VRFs (eg: ACP vs. “data-plane” addresses)
 - No way to select instance based on network distance (closer is better) – distance not intrinsic to unicast or mDNS transport.
GRASP Service structure (CBOR/CDDL)

```
service-element = {
  ?( &(private:0) => any), ............. Private parameters not useful for DNS-SD
  ?( &(msg-type:1) => msg-type),........ Message Purpose: describe/enumerate (-request)
  ?( &(service:2) => tstr),............. Service Name ("printer")
  *( &(instance:3) => tstr),............. Instance Name ("my-kitchen-printer")
  ?( &(domain:4) => tstr),............. Empty = .local (e.g.: ACP), else name
  ?( &(priority:5) => 0..65535 ),........ As in DNS-SD
  ?( &(weight:6) => 0..65535 ),......... As in DNS-SD
  *( &(kvpairs:7) => { *(tstr: any) },.. Key Value pairs — as in DNS-SD
  ?( &(range:8) => 0..255 ),............ Controls distance or priority/weight selection
  *( &(clocator:9) => clocator),........ GRASP locators with context indicator ("VRF")
}
```

clocator = [context, locator-option] Permit locators to be in data plane
context = tstr Empty: ACP, "0" = "VRF0", else name of VRF
locator-option = <unchanged> from GRASP specification — addr/port

msg-type = &(describe: 0, describe-request:1, enumerate:2, enumerate-request:3).

GRASP exchanges:

- GRASP M_FLOOD == unsolicited announcement of objective == service instance (GRASP flooded)
 - msg-type: “describe”

- GRASP M_DISCOVERY = find an objective == service instance (GRASP flooded)
 - msg-type: “describe-request”
 - Reply: GRASP M_REQ_SYN with msg-type: “describe” (unicast)
 - Flooding of request stops at first found objective providers (standard GRASP behavior)

- Describe/describe-request also useable in any unicast GRASP negotiations

- Msg-type “enumerate”, “enumerate-request”:
 - Do not provide clocators of instances (as “describe” does), but only instance names (to support “browsing” as in DNS-SD)
 - This is then followed by a second round of “describe-request” – unicasted to originator of “enumerate”

- Backward compatibility with existing BRSKI/ACP definitions:
 - GRASP SRV.<service-name> objective without service-element in objective-value (including no objective-value at all)
 - Same as msg-type “describe”, clocator is the locator from the GRASP message header, weight/priority at default values
Common objective-value elements

objective-value /= { 1*elements }
 elements /= (@rfcXXXX: { 1*relement })
 relement = (relement-codepoint => relement-value)
 relement-codepoint = uint
 relement-value = any

relement-codepoint /= (&(sender-loop-count:1) => 1..255)
relement-codepoint /= (&(srv-element:2) => service-element)

• If an objective wants to use reuseable elements:
 • Objective value must be a map. Reuseable elements use a well-known key in the map (“rfcXXXX”)
• Reuseable elements have IANA assigned codepoint (and specifcation)
• Two reuseable elements defined:
 • Service element
 • Sender-loop-count (to enable distance from sender recognition in M_FLOOD / M_DISCOVERY)
Name resolution:

- Objective names: NAME.<hostname>
 - <hostname> as in DNS hostnames (without domain)
 - Uses same GRASP service structure, just most elements defined to be unused.
 - Allows to discover devices by their name
 - Objective names of this type are not to be IANA registered

- Usefulness: TBD (opinions welcome)
 - Very much depending on size of GRASP domain and frequency of name lookups required
 - Quite useful for network administration diagnostics
 - Reminder: primary scope of GRASP users is network protocols / OAM, not end-user!

- Example:
 - Typically infra equipment (router, switches,..) in a network have hostnames.
 - These should be in DNS... and they are.. in well organized networks (meaning: quite often not 100% consistent)
 - How do you find a device by name if they are not?