Agenda

• BGP Signaled Multicast Review
 • draft-zzhang-bess-bgp-multicast
 • Presented in 98th IETF

• Controller-based BGP Multicast Signaling
 • draft-zzhang-bess-bgp-multicast-controller

• Summary
Multicast: complexity, fear/dislike, necessity/reality

• Many operators do not want to burden their infrastructure with multicast trees
 • They can live with ingress replication for multicast traffic
 • They do not like the following aspects of multicast trees
 • Per-tree state
 • PIM soft-state refresh overhead
 • PIM-ASM complexity due to shared-to-source tree switch
 • Yet another protocol to set up the trees

• Nonetheless, some operators have a lot of mission-critical multicast traffic, and still need the efficiency gains of having multicast trees in the infrastructure
 • at least until BIER arrives ^
BGP Signaled Multicast: What & Why

• Use BGP to signal multicast
 • Use as a replacement for PIM
 • (s,g)/(*,g) unidirectional/bidirectional trees
 • Optionally with MPLS data plane
 • Use as a replacement for mLDP
 • Use mLDP FEC (<root, opaque_value>) to identify tree

• Why?
 • Remove PIM soft state and ASM complexities
 • PIM-Port only removed soft state and deployment has been limited
 • PIM-SSM removes ASM complexities but requires good source discovery methods
 • Consolidate to BGP signaling
 • Single, scalable protocol for unicast/multicast, labeled/unlabeled
How to signal tree/tunnel using BGP

• Use receiver-initiated “joins” - Leaf A-D routes in C-MCAST SAFI
 • Propagated over hop by hop EBGP/IBGP sessions or through RRs
• Each node determines upstream hop by using same RPF procedure as PIM/mLDP
• Leaf A-D routes serve the purpose of PIM Join or mLDP P2MP label mapping
 • NLRI encodes (s,g)/(*,g) or mLDP FEC
 • Route Target identifies Upstream node
 • Routes processed by upstream node and not propagated further
 • A new route with different NLRI is originated for the next node in the tree
• Tunnel Encapsulation Attribute carries forwarding information
 • In case of labeled tree/tunnel, or
 • If downstream/upstream are not directly connected
• For MP2MP labeled tunnels, S-PMSI/Leaf A-D routes serve the purpose of mLDP MP2MP-U/MP2MP-D label mappings
• For ASM, source specific trees are set up after source discovery via Source Active (SA) A-D routes, avoiding RP/shared-trees
Source Discovery for ASM

- First Hop Routers (FHRs) advertise SA routes
 - Upon receiving locally originated traffic
- Last Hop Routers (LHRs) receive SA routes and join source specific trees
- Similar to MSDP method, but:
 - Extended from among RPs to among FHRs and LHRs
 - With BGP advantages:
 - No periodical refreshing
 - No peer RPF checks for SA propagation
 - RRs and Route Target Constrain (RTC) can be used to avoid flooding SA routes
 - FHRs attach a RT that encodes the group address and advertise to RRs
 - LHRs advertise RT Membership NLRIs that encode the above mentioned RT for groups that they're interested in
 - SAs are only advertised to interested LHRs due to the RTC mechanism
Incremental Transition

• For mLDP or PIM-SSM replacement, transition can independently happen at any node
 • If the upstream neighbor can support BGP multicast signaling, then use it
• For PIM-ASM replacement, first upgrade the RPs so that they can advertise SA routes. After that each node can independently transition
 • If an upgraded node receives (*,g) PIM join, and its upstream supports BGP multicast signaling, it behaves as if it were a LHR
 • Terminate (*,g) join
 • Send RT Membership NRLI corresponding to the group
 • Establish source trees after receiving corresponding SA routes.
BGP hop-by-hop signaled multicast

- Each router independently determines its upstream and send Leaf A-D routes to it
 - Much like PIM/mLDP
- The routes may be reflected by a RR
Controller Based Signaling

- Instead of hop-by-hop signaling initiated from LHRs, an intelligent controller can figure out the entire tree/tunnel and signal to all routers on the tree/tunnel
 - Same Leaf A-D routes as in hop-by-hop case
 - The controller does not have to peer with each router directly – could be via other RRs
- Each router simply sets up forwarding state accordingly
 - No need for PIM/mLDP-like procedures to figure out upstream
 - No need to send message upstream and receive message from downstream
Differences from hop-by-hop case

- A single Leaf A-D route from the controller can signal multiple downstream routers to the same upstream
 - A new Composite Tunnel in Tunnel Encap Attribute (TEA) means traffic is to be sent out of all component tunnels represented by its sub-TLVs
 - Forwarding info used to receive traffic from its upstream is also signaled via the same Leaf A-D route
- Labels could be allocated from:
 1. A controller’s own local label space
 2. A common SRGB
 3. Each router’s SRLB
- With the first two label allocation options, per-tree/direction label could be used
 - Per-tree labels could be use for unidirectional trees
 - Per-<tree, direction> labels could be used for bidirectional trees
 - Neighbor-based RPF is needed in data plane to use per-tree/direction labels
 - <neighbor-identifying label, per-tree/direction label> stack for #2
- In the first option, a controller-identifying label is needed
 - <controller-identifying label, neighbor-identifying label, per-tree/direction label>
 - <controller-identifying label, tree-identifying label>
Consistency

• Multiple controllers could be used
 • Each could calculate and signal independently
 • As long as all the routers on a tree/tunnel choose routes from the same controller it’s fine
 • In labeled case, even if they choose differently, there is no traffic looping
 • In unlabeled case, routers must choose based on controllers’ address to ensure consistency and prevent loops

• Topology change in bidirectional case
 • Since upstream/downstream update their state (per signaling from the controller) independently, transient loops may happen
 • In the unlabeled case, order of updates must be ensured - out of scope
 • In the labeled case, per-tree label cannot be used
 • Per-<tree,direction> label may be fine
 • Not an issue for unidirectional case
Summary

• BGP-signaled multicast could replace PIM/mLDP signaling:
 • Removes PIM refreshes & PIM-ASM complexity
 • Consolidates to BGP signaling
 • draft-zzhang-bess-bgp-multicast

• BGP-controller-signaled multicast is well suited for SR networks
 • Tree calculation delegated to omniscient/omnipotent controllers
 • Based on many factors/constraints/algorithms
 • Router operation is simplified
 • Simple forwarding state programming based on BGP messages
 • Per-tree/direction labels may ease monitoring & troubleshooting
 • May not be supported due to software/hardware capabilities
 • draft-zzhang-bess-bgp-multicast-controller