
2017-01-09: CBOR WG

• Concise Binary Object Representation  
Maintenance and Extensions

1. Formal process: Take RFC 7049 to IETF STD level

2. Standardize CDDL as a data definition language

3. (Maybe define a few more CBOR tags, as needed.)

1

CDDL
Henk Birkholz, Christoph Vigano, Carsten Bormann

draft-ietf-cbor-cddl

2

ABNF
• BNF (Backus-Naur form) : grammars for strings

• RFC40 (1970): first RFC with BNF

• “Internet” BNF: Augmented BNF (ABNF)

• RFC 733 (1977): “Ken L. Harrenstien, of SRI
International, was responsible for re-coding the
BNF into an augmented BNF which compacts
the specification and allows increased
comprehensibility.”

3

ABNF in the IETF

• 752 RFCs and I-Ds reference RFC 5234 (the most
recent version of ABNF) [cf. YANG: 160]

• Tool support (e.g., BAP, abnf-gen; antlr support)

• Pretty much standard for text-based protocols that
aren’t based on XML or JSON

4

ABNF is composed of
productions

addr-spec = local-part "@" domain
local-part = dot-atom / quoted-string / obs-local-part
domain = dot-atom / domain-literal / obs-domain
domain-literal = [CFWS] "[" *([FWS] dtext) [FWS] "]" [CFWS]
dtext = %d33-90 / ; Printable US-ASCII
 %d94-126 / ; characters not including
 obs-dtext ; "[", "]", or “\"

• Names for sublanguages
• Compose using

• Concatenation
• Choice: /

• Literals terminate nesting

5

From ABNF to CDDL

• Build trees of data items, not strings of characters

• Add literals for primitive types

• Add constructors for containers (arrays, maps)

• Inspiration: Relax-NG (ISO/IEC 19757-2)

6

Rule names are types
bool = false / true
label = text / int
int = uint / nint

• Types are sets of potential values
• Even literals are (very small) types

participants = 1 / 2 / 3
participants = 1..3
msgtype = "PUT"
msgtype = 1

7

Groups: building containers
• Containers contain sequences (array) or sets

(maps) of entries

• Entries are types (array) or key/value type pairs
(maps)

• Unify this into group:

• sequenced (ignored within maps)

• labeled (ignored within arrays)

8

reputation-object = {
 application: text
 reputons: [* reputon]
}

reputon = {
 rater: text
 assertion: text
 rated: text
 rating: float16
 ? confidence: float16
 ? normal-rating: float16
 ? sample-size: uint
 ? generated: uint
 ? expires: uint
 * text => any
}

; This is a map (JSON object)
; text string (vs. binary)
; Array of 0-∞ reputons

; Another map (JSON object)

; OK, float16 is a CBORism
; optional…

; unsigned integer

; 0-∞, express extensibility

How RFC 7071 would have looked like in CDDL

9

Named groups
 header_map = {
 Generic_Headers,
 * label => values
 }
 Generic_Headers = (
 ? 1 => int / tstr, ; algorithm identifier
 ? 2 => [+label], ; criticality
 ? 3 => tstr / int, ; content type
 ? 4 => bstr, ; key identifier
 ? 5 => bstr, ; IV
 ? 6 => bstr, ; Partial IV
 ? 7 => COSE_Signature / [+COSE_Signature]
)

• Named groups allow re-use of parts of a map/array
• Inclusion instead of inheritance

10

GRASP
• Generic Autonomic Signaling Protocol (GRASP)
• For once, try not to invent another TLV format: just use CBOR
• Messages are arrays, with type, id, option: 
 message /= [MESSAGE_TYPE, session-id, *option] 
 MESSAGE_TYPE = 123 ; a defined constant 
 session-id = 0..16777215 
 ; option is one of the options defined below

• Options are arrays, again: 
 option /= waiting-time-option 
 waiting-time-option = [O_WAITING, waiting-time] 
 O_WAITING = 456 ; a defined constant 
 waiting-time = 0..4294967295 ; in milliseconds

11

draft-ietf-anima-grasp-15.txt

12

SDOs outside of IETF
• CDDL is being used for specifying both CBOR and

JSON in W3C, ___, and _________ ___

• Data in flight in a variety of protocols, e.g.

• Access to specific features in wireless radios

• Aggregation of metadata,  
enabling visualization of network topologies

13

From draft to RFC
• Do not: break it

• Editorial improvements required

• Any additional language features needed?

• Should stay in the “tree grammar” envelope
• Should be mostly done with that, anyway.

• What can we take out?  
Not much without breaking specs.

14

Avoid the kitchen sink
• This is not a Christmas wish list

• Each feature has a cost

• specification complexity

• learning effort

• implementation effort

15

Improvements of definition
• https://cbor-wg.github.io/cddl/matching/draft-ietf-

cbor-cddl.html#rfc.appendix.B
• Editors’ draft, “matching” branch: new appendix B,

matching rules
• Concisely summarizes CDDL semantics

• Is this
• Useful
• Correct
• Complete?

16

https://cbor-wg.github.io/cddl/matching/draft-ietf-cbor-cddl.html#rfc.appendix.B
https://cbor-wg.github.io/cddl/matching/draft-ietf-cbor-cddl.html#rfc.appendix.B

“Map validation” issue
• CDDL semantics are generative (production

system)

• All elements of a group in a map are equal

• Wildcard match (for extensibility) can enable what
was not intended to be enabled

• How to create priority for “more specific”?

17

{ ? 4=>text,  
 * uint=>any }

cuts (better error messages)
a = ant / cat / elk
ant = ["ant", ^ uint]
cat = ["cat", ^ text]
ant = ["elk", ^ float] 

["ant", 47.11]

• Tool will not tell you "can't match a",  
but "can't match rest of ant”

• Worth adding?

18

Proposal: use cuts here, too

• A cut after recognizing a map key cuts off any
alternative matches

• Proposal: Make existing “:” a shortcut for “^ =>”

• TO DO: fully define

• TO DO: check for breakage

• TO DO: implement

19

{ ? 4 ^ =>text,  
 * uint=>any }

{ ? 4: text,  
 * uint=>any }

CBOR (RFC 7049) bis
Concise Binary Object Representation

Carsten Bormann, 2017-11-16

20

Take CBOR to STD

• Do not: futz around
• Do:
• Document interoperability
• Make needed improvements in specification quality

• At least fix the errata :-)
• Check: Are all tags implemented interoperably?

21

Take CBOR to STD

Process as defined by RFC 6410:

• independent interoperable implementations ✔

• no errata (oops) ✔ in draft

• no unused features [_]

• (if patented: licensing process) [N/A]

22

draft-ietf-cbor-7049bis-01

• –00 had already fixed errata
• –01: 2017-10-14
• Amplification of chosen Simple encoding  

(1-byte only for false/true/null etc.)
• Add a changes section

• Maybe sort this into fixes and new information?
• New: Section 2.5 CBOR Data Models

23

CBOR data models
• Biggest failing of JSON: Data model now entirely implicit
• Observant reader could infer CBOR data model from

RFC 7049
• Now more explicit: “generic data model” (as opposed to

any specific data model realized in CBOR)
• Unextended (basic) data model
• Extension points: Simple, Tags

• Pre-extension by false/true/null/undefined,  
18 pre-defined tags

• Further extension by Simple/Tag definitions (IANA)

24

Why is a generic data model
important?

• Generic data model enables the implementation of
generic encoders and decoders

• An ecosystem of generic encoders and decoders
• makes interoperability so much more likely
• guides definition of specific data models

25

“Expectations”

• “Batteries included”: not always appropriate
• But some of the pre-extensions are really basic

• Which ones?
• Section 2.5 states false/true/null are expected to

be provided in a generic encoder/decoder
• Anything else (Simple: undefined, 18 tags) is “truly

optional and a matter of implementation quality”.

26

Implementations

• Parsing/generating CBOR
easier than interfacing with
application

• Minimal implementation:  
822 bytes of ARM code

• Different integration models,
different languages

• > 40 implementations

27 http://cbor.io

Houston, we have an
interoperability problem

• Tags 21, 22, 33, 34: base64url, base64 classic
• Those can be used with or without padding.  

Which one is it?
• Defined for tag 21: base64url without padding.
• But what about tag 22, 34? Reference to RFC4648

not helpful.
• Tag 33: is this also limited to base64url without

padding? (And what about tag 34?)
• (Is white space allowed? I don’t think so.  

Weird line length limitations? Of course not.)

28

Being permissive is not
solving this

• Tag 21, 22 are intended to be acted upon by a
CBOR-to-JSON converter — need to know how

• Tag 33, 34 could be interpreted in a more
permissive way?

• Depending on specific data model, might require
re-encoding on conversion to JSON (!)

29

How are base64, base64url
being used in practice?

• Easy: Base64url is almost always without padding

• Interoperability benefits from nailing this down

• Base64 more variable

• Usually used with padding, but exceptions

• Bikeshed

30

Solutions?
• Be more explicit about tag 33: base64url is used

without padding in this case, too

• Could define tag 22/34 as with or without padding

• Tag 22 defines JSON side, tag 34, CBOR side

• Could define additional tags for padding/none
(probably only for base64 classic)

• Also, tag 23 (base16): lower or upper case?

31

Proposal
• Padding designed to help with indeterminate length

• We do know the length, so no padding is “right”

• RFC 7049 was unclear about this

• ➔ for base64 classic, go for no padding, too

• add an implementation note explaining the
clarification and asking to be particularly liberal
about what you accept

32

Continuing work on
implementation matrix
• https://github.com/cbor-wg/

CBORbis/wiki/Implementation-
matrix

• Need to fill in more columns

• Certainly not for all 45
implementations :-)

• Who?

33

https://github.com/cbor-wg/CBORbis/wiki/Implementation-matrix
https://github.com/cbor-wg/CBORbis/wiki/Implementation-matrix
https://github.com/cbor-wg/CBORbis/wiki/Implementation-matrix

CBOR tag definitions
Carsten Bormann, 2017-11-16

34

Batteries included
• RFC 7049 predefines 18 Tags

• Time, big numbers (bigint, float, decimal),
various converter helpers, URI, MIME message

• Easy to register your own CBOR Tags

• > 20 more tags: 6 for COSE;  
UUIDs, Sets, binary MIME, Perl support,  
language tagged string, compression

35

CWT: CBOR Web Token
• JWT: JSON Web Token (RFC 7519)

• Package Claim Set into JSON

• Apply JOSE for Signing and Encryption

• CWT: Use CBOR and COSE instead of JSON and JOSE

• CWT can replace unstructured misuse of certificates for
Claim Sets

• Tag 61 assigned; WGLC completed in IETF ACE WG  
(draft-ietf-ace-cbor-web-token)

36

Status of Tags drafts
• OID: On charter, kitchen sink, expired.  

Needs work.

• Array: On charter, ready for adoption

• Time: Off charter; solved for now by FCFS registration  
(3-byte tag 1001); move spec to RFC how?

• Template: Off charter  
(will likely be done with SCHC anyway)

• “Useful tags”: Maybe document some of the more useful
registered tags in an RFC on its own (could include Time)?

37

draft-jroatch-cbor-tags-06
• Provide tags for homogeneous arrays represented in

byte strings

• Inspired by JavaScript

• 12×2: Both LSB and MSB first

• Reserves 24 contiguous tags in 2-byte space

• Provides a tag for other homogeneous arrays

• Provides a tag for multidimensional arrays

38

Array tags: 2-byte space?
• 2-byte Tags: Tags 24 to 255
• 2017: ~ 20 taken of 232; be careful with the space
• This is taking out 24 more — would this be a waste of

2-byte space?
• Yes; arrays can be large; fine with 3-byte tags
• No; arrays can also be small (e.g., RGB)

• Could partition 2 vs. 3 by size of basic type; ugly
• Would like to move this ahead (technical decision

should not be an obstacle for draft adoption anyway)

39

Time tag

• Document 1001 as is

• Could do this on independent stream,  
WG allowing

• Develop 1001 into a more general time tag

40

http://cbor.io
http://cbor.me

http://cddl.space

41

