Public Key EXchange

Dan Harkins
Many authenticated key exchange protocols use trusted but uncertified (i.e. “raw”) public keys – IKE, TLS, MQV, etc.

These keys are always established:

“In a manner outside the scope of the protocol”

Problems with gaining trust in “raw” public keys:

– "the main security challenge [to using 'raw' public keys] is how to associate the public key with a specific entity. Without a secure binding between identifier and key, the protocol will be vulnerable to man-in-the- middle attacks.” (RFC 7250)

– Unknown key share attacks are possible if proof-of-possession of the private key is not demonstrated when the public key is exchanged.
Need a standard, programmatic way to exchange "raw" keys that:

- Guarantees the integrity of exchanged keys
- Establishes a secure binding between an identity and the obtained key
- Provides proof-of-possession of corresponding private key
- Is simple, robust, easy to use correctly, and hard to use incorrectly
Use PAKE to obtain secure channel authenticated to an identity
Exchange public keys through secure channel
Provide proof-of-possession of private key

PKEX – Public Key EXchange
– Parlay a simple short-lived word/code/phrase into a trusted and long(er)-lived public key!
– Use case from RFC 8125 (CFRG’s PAKE Requirements)
Goals of PKEX

– Resistant to passive, active, and dictionary attack
– Allows a single public key to be exchanged with a multitude of peers
– Minimal number of primitives
– Upon completion of PKEX each peer trusts the other’s public key:
 ▪ The public key received is the same as the public key the peer sent
 ▪ The peer is in possession of the private analog to the public key
 ▪ The public key is bound to the authenticated identity of the peer
What of PKEX

— Two phases:
 1) “Exchange phase” is SPAKE2
 2) “Commit phase” provides public key, binds it to the PAKE-authenticated exchange, and proves possession of the private key

— Uses role-specific public elements: \(P_i \) – initiator’s; \(P_r \) – responder’s

— Size of prime in group used in PKEX determines primitives:
 • Hash algorithm— \(H() \)
 • Key length of AES-SIV— AE of data \(d \) with key \(k \) and AAD \(s \): \([s]\{d\}_k\)
 • HKDF and HMAC used with \(H() \)

— Element-to-scalar mapping function— \(r = F(R) \)
Given:
- group with generator G
- group-specific elements P_i and P_r
- Alice shares password pw with “Bob”
- Bob shares password pw with “Alice”

”Exchange Phase”

Alice

$x, \ X = x \cdot G$

$Q_i = H(\text{Alice} \mid \text{pw}) \cdot P_i$

$M = X + Q_i$

Alice, M ----->

Bob

$y, \ Y = y \cdot G$

$Q_r = H(\text{Bob} \mid \text{pw}) \cdot P_r$

$Q_i = H(\text{Alice} \mid \text{pw}) \cdot P_i$

$X' = M - Q_i$

$N = Y + Q_r$

<--------Bob, N

$Q_r = H(\text{Bob} \mid \text{pw}) \cdot P_r$

$Y' = N - Q_r$

$z = \text{HKDF}(F(x \cdot Y'), \text{Alice} \mid \text{Bob} \mid F(M) \mid F(N) \mid \text{pw})$

$z = \text{HKDF}(F(y \cdot X'), \text{Alice} \mid \text{Bob} \mid F(M) \mid F(N) \mid \text{pw})$
Given:
- Alice has identity key a/A
- Bob has identity key b/B

"Commit Phase"

Alice

\[
\begin{align*}
 u &= \text{HMAC}(F(a*Y'), \text{Alice} | F(A) | F(Y') | F(X)) \\
 [0]\{ A, u \}_z &\longrightarrow
\end{align*}
\]

Bob

If (SIV-decrypt returns fail) fail
If (A not valid element) fail
\[
\begin{align*}
 u' &= \text{HMAC}(F(y*A), \text{Alice} | F(A) | F(Y) | F(X')) \\
 \text{If (u' != u) fail}
\end{align*}
\]

\[
\begin{align*}
 v &= \text{HMAC}(F(b*X'), \text{Bob} | F(B) | F(X') | F(Y)) \\
 \text{If (SIV-decrypt returns fail) fail}
\end{align*}
\]

If (B not valid element) fail
\[
\begin{align*}
 v' &= \text{HMAC}(F(x*B), \text{Bob} | F(B) | F(X) | F(Y')) \\
 \text{If (v' != v) fail}
\end{align*}
\]

\[
\begin{align*}
 [1]\{ B, v \}_z &\longrightarrow
\end{align*}
\]
Upon successful completion of PKEX...

✓ Alice possesses the public key Bob sent
✓ Alice has assurance that this is really Bob’s key
✓ Alice knows Bob possesses his private key

(Ditto for Bob to Alice)

Raw Public Keys are now trusted for use!

Privacy note: While Alice and Bob expose their identities during PKEX, their public “identity keys”, to which their identities are bound, are not exposed which could afford a modicum of privacy to their subsequent use in some other AKM protocol.
What Now?

draft-harkins-pkex-04 is latest-and-greatest
 – Three independent interoperable implementations
 – Received some cryptanalysis
 – Appendix contains role-specific elements for 6 popular ECC groups and 4 popular FFC groups

I’d like the -04 draft to be adopted by CFRG as a work item