Public Key EXchange

Dan Harkins

Many authenticated key exchange protocols use trusted but
uncertified (i.e. “raw”) public keys — IKE, TLS, MQYV, etc

These keys are always established:
“In a manner outside the scope of the protocol”

Problems with gaining trust in “raw” public keys:

— "the main security challenge [to using 'raw’ public keys] is how to associate the public
key with a specific entity. Without a secure binding between identifier and key, the
protocol will be vulnerable to man-in-the- middle attacks.” (RFC 7250)

— Unknown key share attacks are possible if proof-of-possession of the private key is not
demonstrated when the public key is exchanged.

Need a standard, programmatic way to exchange “raw”
keys that:
v Guarantees the integrity of exchanged keys

v’ Establishes a secure binding between an identity and the
obtained key

v’ Provides proof-of-possession of corresponding private key

v’ |s simple, robust, easy to use correctly, and hard to use
incorrectly

>se PAKE to obtain secure channel authenticated to an identity
>Exchange public keys through secure channel
>Provide proof-of-possession of private key

PKEX — Public Key EXchange

—Parlay a simple short-lived word/code/phrase into a trusted and
long(er)-lived public key!
—Use case from RFC 8125 (CFRG’s PAKE Requirements)

Goals of PKEX

— Resistant to passive, active, and dictionary attack
— Allows a single public key to be exchanged with a multitude of peers

— Minimal number of primitives

— Upon completion of PKEX each peer trusts the other’s public key:
= The public key received is the same as the public key the peer sent
= The peer is in possession of the private analog to the public key
= The public key is bound to the authenticated identity of the peer

What of PKEX

—Two phases:
1) “Exchange phase” is SPAKE2

2) “Commit phase” provides public key, binds it to the PAKE-authenticated
exchange, and proves possession of the private key

—Uses role-specific public elements: P,— initiator’s; P, — responder’s

—Size of prime in group used in PKEX determines primitives:

e Hash algorithm-- H()
* Key length of AES-SIV— AE of data d with key k and AAD s: [s]{d},
« HKDF and HMAC used with H()

—Element-to-scalar mapping function—r = F(R)

Given:
e group with generator G

e group-specific elements P, and P, o EXCh d nge P h d SE”

e Alice shares password pw with “Bob”
* Bob shares password pw with “Alice”

Alice Bob
X, X =X*G v, Y =y*G
Q, = H(Alice | pw)*P, Q, = H(Bob | pw)*P,
M=X+Q Alice, M -------- >
’ Q, = H(Alice | pw)*P,
X' =M-Q
e Bob, N N=Y+Q,
Q, = H(Bob | pw)*P,
Y=N-Q
z = HKDF(F(x*Y’), Alice | Bob | z = HKDF(F(y*X’), Alice | Bob |

F(M) | F(N) | pw) F(M) | F(N) | pw)

Given:

* Alice has identity key a/A)) -))
* Bob has identity key b/B COmmIt Phase

Alice Bob

u = HMAC(F(a*Y’), Alice | F(A) | -
F(Y’) | F(X))

If (SIV-decrypt returns fail) fail

[0{A, u}, o > If (A not valid element) fail

u’ = HMAC(F(y*A), Alice | F(A) |
F(Y) | F(X))

If (u” 1= u) fail
v = HMAC(F(b*X’), Bob | F(B) |
If (SIV-decrypt returns fail) fail < [1]{B, v}, F(X') | F(Y))

If (B not valid element) fail

v’ = HMAC(F(x*B), Bob | F(B) |
F(X) | F(Y’))

If (v’ !=v) fail

Upon successful completion of PKEX...

v'Alice possesses the public key Bob sent

v'Alice has assurance that this is really Bob’s key

v'Alice knows Bob possesses his private key
(Ditto for Bob to Alice)

Raw Public Keys are now trusted for use!

Privacy note: While Alice and Bob expose their identities during PKEX, their
public “identity keys”, to which their identities are bound, are not exposed
which could afford a modicum of privacy to their subsequent use in some
other AKM protocol.

What Now?

draft-harkins-pkex-04 is latest-and-greatest
—Three independent interoperable implementations
—Received some cryptanalysis

—Appendix contains role-specific elements for 6 popular ECC
groups and 4 popular FFC groups

I’d like the -04 draft to be adopted by CFRG as a work item

