SkipChains: Offline and Peer-to-Peer Verifiable Blockchains

Prof. Bryan Ford
Decentralized/Distributed Systems (DEDIS)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

IRTF CFRG – November 15, 2017
The Call of the Blockchain

YOU GET A BLOCKCHAIN!
AND YOU GET A BLOCKCHAIN!

EVERYBODY GETS A BLOCKCHAIN!!!
But… Today’s Blockchains Suck

Public/permissionless (e.g., Bitcoin, Ethereum)
- Weak probabilistic consistency
- Long transaction delays, low throughput
- Clients must be online, well-connected
- Mining is inefficient, insecure, re-centralizing

Private/permissioned (e.g., HyperLedger, R3, …)
- Weak security – single points of compromise
Problem: Efficient Verification

How does a “light” (low-power, mobile) client securely confirm a thing is on the blockchain?

- Especially after being offline for months, years?
- Without “just trusting” central party (exchange)?

Weak SPV approach: just verify block headers

- Still must gossip with many parties
- Still costs bandwidth, especially to “catch up”
- Vulnerable to (costly but feasible) fake views
Cryptographic SkipChains

Offline- and peer-to-peer-verifiable blockchains

- DEDIS “Chainiac” paper [USENIX Security ‘17]
- Applied to secure key & software updates

Builds on Collective Signing (CoSi)

- DEDIS “Authorities” paper [IEEE S&P ‘16]
- Internet-Draft: draft-ford-cfrg-cosi-00

Multiple EdDSA signatures

\begin{align*}
R_1 & S_1 & R_2 & S_2 & R_3 & S_3 & R_4 & S_4 \\
\end{align*}

\rightarrow

1 Sig + Bitmap

\begin{align*}
R & S \\
\end{align*}
Backward and Forward Verifiability

Standard blockchains traversable only backward

- Via hash back-links from current head

Chainiac adds traversability forward in time

- Collective signature by prior consensus group
Signing Key Group Evolution

Forward pointers include signing-key-group deltas
- Whenever public keys added, removed, rotated
Taking Leaps Through Time

Each block validates \textit{prev} w/\textit{hash}, \textit{next} w/\textit{sig}

- Higher level hashes, sigs \rightarrow longer hops
- $O(\log N)$ traversal arbitrarily forward, back

\begin{itemize}
 \item Backward hash links, embedded in blocks at commit time
 \item Collectively signed forward links, added later once target exists
\end{itemize}
O(log N) On-SkipChain Proofs

Prove a thing is on-chain anywhere in time

- Securely help outdated peers “catch up”
- Already-up-to-date verifiers rely only on recent collective signatures for security

![Diagram showing time and level with arrows indicating connections between different levels and times.](image-url)
SkipChains: Summary

Cryptographically traversible blockchain

- Low-power clients can follow efficiently
 - Need not download/verify every block [header] or trust the word of any “full node”

- Verify transactions forward or back in time
 - Including disconnected, peer-to-peer clients

- Consensus group signing keys can change
 - Slowly: e.g., permissioned blockchain
 - Rapidly: e.g., proof-of-stake blockchain
Applications of SkipChains

Enable Offline/P2P verification

- Works even if Internet is unavailable, slow, costly

Broad applications

- Software/key updates
- Blockchain-Attested Degrees, Awards, …
- Chain-of-Custody, Bills of Lading, …

Blog: “How Do You Know It’s On the Blockchain?”
Chainiac: Secure, Transparent Software Development & Updates

End-to-end secure software supply chain

- Development: peer review, signoff workflow
- Build: independent verification of exact binaries
- Distribution: offline/P2P updates via SkipChains

Applicable to open source & proprietary software
Code available on GitHub...

All are welcome to use it and build on it...

Kyber: Advanced crypto library for Go
- https://github.com/dedis/kyber
- Public-key Encryption, Signatures, Shamir Secret Sharing, Zero-Knowledge Proofs, Verifiable Shuffles, Optimized Ed25519, ...

Cothority: Collective authority software suite
- https://github.com/dedis/cothority
- CoSi, ByzCoin, Chainiac, ...