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What is Network Calculus ?

A theory and tools to compute bounds on queuing
delays, buffers, burstiness of flows, etc

C.S. Chang, R. Crugz, JY Le Boudec, P. Thiran, ...

For deterministic networking, per-flow and per-
class queuing

Arrival curve, Service curve, Shapers,
Concatenation



Where could it be applied to DetNet ?

Which parameters for describing the contribution of a DetNet
node to the end-to-end delay bounds ?

More generally, how to describe the parameters of interest of a
Detnet node without imposing an implementation ?

How to prove delay bounds for a detnet node ? For a detnet
network (e.g. UNI to UNI) ?

Simplification of Path Computation.



Arrival Curve

For a flow, at an observation point

Flow is constrained by arrival curve a() iff the amount of basic data
units (e.g. bytes) observed in any interval of duration t is < a/(t)

token bucket with rate r and token bucket + peak rate p and MTU

burst b: a(t) =rt+ b M: a(t) = min(pt + M,rt + b)
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The Arrival Curve implied by
detnet-architecture-03, 4.3.2

At most N transmissions Any arrival curve can be
of sizeatmost L inT assumed sub-additive
seconds
sub-additive:
bytes a(s+t) < afs)+a(t)
3N —
2NL

concave = subadditive

NL time interval t
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Service Curve

Network
Element

A(D)

A(t), D(t): amount of basic data units observed in |0, t]

Network element offers to this flow a service curve () if

vVt >0,3s € |0,t]:D(t) = A(s) + B(t — 5)



Network

Service Curve Example Element

Rate-latency service curve :

B(t) =Rt —-T)" ! bytes N
Models many schedulers: DRR, & B(t) = R(t — T)* =
PG PS, RFC 7006, etc. maX(O, R(t _ T))
Example: service received by a high I -

priority flow (no pre-emption):

D(t) = A(s) + B(t — s)

R = line rate s = beginning of busy period

RT = MTU of low priority packets



Network
Element

Service Curve Example:

Bounded Delay
For a FIFO per-flow system: Tbytes 5.(t) = {O ift<T
~(t) =
delayis< T T else
=

system offers to this flow a
service curve equal to the

delay function B(t) = 81(t) D(t)=A(t—T)

T t



Basic Results: 3 Tight Bounds

Service curve D(t)

A(t)
~ a()
a(t
/T h(a
v B /(o)

/

Flow is constrained by arrival curve
a(); served in network element with
service curve (). Then

. backlog < v(a,B) = sup(a(t) — ,B(t))

2. if FIFO per flow, delay < h(a, )
3. output is constrained by arrival curve

a*(t) = Sup(a(t +u) — ,B(u))

uz0



One flow, constrained by one token
bucket is served in a network element
that offers a rate latency service curve.

/Tt)(b Assumer < R
W0 = )
; p(t) #R(t—T) Backlog bound: b + 1T

Delay bound: % + T

Output arrival curve:

T ' a*(t) =rt+b"
with b* = b + 1T

(burstiness b is increased by rT)
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Concatenation

A(t)

Service curve Al(t) Service curve

| |
| |

I
r ,31() ,32() |

A flow is served in series, network element i offers service curve 5;().

The concatenation offers the service curve () defined by

B(t) = inf (B1(s) + Bo(t = 9))
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Min-Plus Convolution
p(t) = inf (B1(s) + B2(t —5))
B =P QP

This operation is called min-plus convolution. It has the same nice

properties as usual co

nvolution; e.g.

(B1Q F2) ® B3 =1 Q (B2 & F3)
b1 & By =2 b1

It can be computed easily: e.g.

R = min(Rl, Rz)

/

Y@
T,

=
T,

T=T1‘LT2
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Pay Bursts Only Once

D, D,
o b1 ‘ B
‘ D
a 1 X B
a(t)=rt+b

Bi(t) =R(t—Ty"
B2(t) =R(t —T,)"
r<R

one flow constrained at source by a()

end-to-end delay bound computed
node-by-node (also accounting for
increased burstiness at node 2):

D, + D, = 2b+RTy

computed by concatenation:
b
D=—=+T,+T
R 1 2
i.e. worst cases cannot happen

simultaneously — concatenation
captures this !
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Shapers

size b

_/|\_ leak with rate r

shaper (7, b)
Burstiness increases as flows traverse network elements

Shapers are used to reduce burstiness

Example: leaky bucket shaper (r, b) releases a packet only if there is
space to put an equivalent amount of fluid into bucket
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The Mathematics of Shapers

fresh traffic shaper o
;’Q =. =®—>
A(t) D(t)

A shaper

forces output to be constrained by arrival curve g ()
stores data in a buffer if needed
Leaky bucket shaper: g(t) =rt+ b

Output of shaperis D(t) = (g Q A)(t)
= Shaper is a service curve element with () = o()
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Properties of Shapers

Re-shaping does not increase worst-case end-to-end delay

fresh traffic shaper o =
. — .
constrained by a()

same end -to-end delay bound with or without shaper

with shaper: D' = h(a, 8, @ 0 @ )
without shaper: D = h(a, 51 ® )
= h(a,f1 ®c QL) =h(a,0 Q 1 ® f2) = h(a,f1 Q fr) = 112



Other Bells and Whistles

Variable and Fixed Delays
can be handled separately

fixed delays can be excluded from service curves
[Le Boudec-Thiran 2001, Section 1.6.3]

Packetization Delays
[Le Boudec-Thiran 2001, Section 1.7.2]
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Implications for Path Computation

In TSN / SRP, end-to-end delay bound is sum of local delay-bounds
computed at every node.

transit

node n
D

transit

node i
D.

transit

node 1
D

path is accepted if }; D; < Diarget

This may be suboptimal because of “Pay Bursts Only Once”. The end-
to-end delay bound may be smaller than };; D;.
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Alternative for Path Computation

Assume every transit nodes exports to PCE / SRP a description of a
service curve it can guarantee to this flow.

For example, here, using a rate-latency service curve (R;, T;)

path is accepted if h (a, minR;,).; T; ) < Dtarget
l

The improvement on delay bound is:
(delay due to burstiness + re-shaping delay ) X (n — 1)
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A Simple Distributed Path Setup Procedure

Assume path is pre-computed (e.g. by with Widest Path routing).

Path setup message from source contains TSPEC + an object for
accumulated service curve e.g. accSerCur = (type=‘rate-latency’, R, T)

Say node i on the path accepts reservation and agrees to offer a rate-
latency service curve with parameters (R;, T;). This node updates
accSerCur in path setup message as:

accSerCur.R = min (accSerCur.R, R;)
accSerCur.T = accSerCur.T + T;

Destination receives the proposed end-to-end service curve and T-
SPEC and computes accurate end-to-end delay bound.
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Centralized Joint Path Selection and Setup

Central PCE can compute a path and reserve resources in one shot.

Problem is : given a TSPEC and a delay bound Dy get find @ path and

the service curve elements at every node on the path such that the
end-to-end delay bound is < Di,pget-

[Frangioni et al 2014]: assume arrival curve is affine, service curves
are rate-latency with linear dependence of latency on rate.

The problem is NP-hard but can be cast as a Mixed-Integer Second
Order Cone Program (MISOCP), which can be solved efficiently in real-
time.
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Conclusions

Network Calculus can

» help understand some physical properties of Deterministic
Networking (e.g. pay bursts only once, reshaping does not increase

end-to-end delay bound),
» simplify end-to-end computations using simple abstractions,

» provide formal guarantees on extreme delays that are hard to
reach by simulation or by ad-hoc analysis,

»provide a simple language to abstract a DetNet node without
prescribing an implementation.
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Future Work ?

Obtain service curve characterization of TSN/other schedulers
and shapers.

Formally prove end-to-end bounds.

Quantify of improvement to end-to-end delay-bounds by
exporting service curves instead of per-node delay-bounds.

Explore implications for path computation and setup
(distributed, centralized).

Propose and test abstract node models.
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