draft-eckert-anima-grasp-dnsssd-00

IETF’100 Singapore, November 2017
DNSSD WG, version 2

Toerless Eckert, Huawei (Futurewei Technologies USA)
tte+ietf@cs.fau.de
ANIMA WG solution

- ANI/ACP: Autonomic - Network Infrastructure / Autonomic Control Plane
 - Automatically built, hop-by-hop encrypted VRF (VRF-lite) – to manage/control networks:
 - Autonomic: between autonomic software in network
 - Management/service agents, distributed protocol instances, ...
 - Classical/SDN: network-devices <-> NOC (NMS/controller/orchestrator/provisioning)

- ACP/ANI: Only IPv6 unicast routing/forwarding
 - No definition/requirement for DNS names – AND NO IP multicast

- GRASP: protocol for discovery, synchronization, negotiation
 - Discovery: Announcement and Request messages: (M_FLOOD, M_DISCOVERY)
 - Network wide hop-by-hop reliable flooded across ANI/ACP

 - Header: objective-name (string), hop-count, sequence number (loop-prevention)
 - objective-name” is the “address” for logical endpoints sending/receiving flooded GRASP messages.

 - Payload: undefined – up to each application (per “objective”)
 - Encoding mandatory though: CBOR (message header and payload)
Use cases

• Autonomic, required by ANI/ACP itself:
 • Bootstrap servers (“BRSKI”).
 • ANI network devices provide bootstrap helper functionality. Connect to bootstrap servers.
 • Servers for renewal of keying material used to protect ANI/ACP (“EST” – RFC7030).
 • ... more in future

• Traditional OAM model:
 • Variety of services in NOC to be discovered by (all or many) network devices to auto-
 configure those services – and provide automatic server failover:
 • Syslog
 • Time (NTP)
 • Netconf (call-home)
 • DHCP server, DNS server
 • Radius, Diameter, Tacacs (authentication servers)
 • WiFi controller (for AP devices)
 • IPfix, any other data collection export
 • tftp (“yuck”)
 • List goes on...
OK, sounds great... why this draft again?

- Do not re-invent for ANI/ACP GRASP aspects of service discovery we already know (and love) from DNS-SD
 - Page 1: Payload: undefined – up to each application (per “objective”)
 - *Not every flooded GRASP objective is a service (announce/request), but if it is, then reuse common definitions!*
 - But keep as simple as possible
 - Do not inherit historic crud (e.g.: _udp, _tcp)
 - Difference in functionality to unicast DNS – GRASP flooding more like mDNS and .local
- So, what do we have with DNS-SD?
 - Service name space – RFC6335 (e.g.: “brski”, “est”, …)
 - Service selection criteria (prio, weight)
 - Service instance names (for browsing... how useful without human selection)
 - “Host-names” of service instances – not needed ?!
 - ... (draft-00 has hopfully mapped the 90% important parameters)
DNS-SD compatible GRASP objectives (CDDL):

```
objective-name  //= SRV.<rfc6335-service-name>
objective-name  //= NAME.<hostname>  .......... If we ever need them
service-element  =  {
    ?( &private:0) => any), .......... Non-standardized extensions
    ?( &msg-type:1 => msg-type
    ?( &service:2) => tstr),............. Service Name ("printer")
    *( &instance:3) => tstr),............. Instance Name ("my-kitchen-printer")
    ?( &domain:4) => tstr),............. Empty = ANI/ACP (like .local), else VRF name
    ?( &priority:5) => 0..65535 ),........ As in DNS-SD
    ?( &weight:6) => 0..65535 ),........ As in DNS-SD
    *( &kvpairs:7) => { *(tstr: any) },,, Key Value pairs – as in DNS-SD
    ?( &range:8) => 0..255 ),............ For distance based service selection
    *( &clocator:9) => clocator),........ GRASP locators with context indicator ("VRF")
}

clocator = [ context, locator-option ] .......... Permit locators to be in data plane
context = tstr .................................. Empty: ACP, "0" = "VRF0", else name of VRF
locator-option = <unchanged> ..................... from GRASP specification – IPv4/IPv6addr/port

msg-type = &{ describe: 0, describe-request:1, enumerate:2, enumerate-request:3 }.
```
Target system

• Simpler, more consistent specification of ANI/ACP services:
 • “service has <name> in IANA registry, parameters according to DNSSD/GRASP” - DONE

• Common service announce/discover API/SDK for servers/clients:
 • Could map to DNS-SD and/or GRASP based on context

• mDNS <-> GRASP services gateway function in NOC router
 • NOC servers could use mDNS (more and more supported already, free SDKs, proven)
 • gateway converts to GRASP,
 • ANI/ACP clients use GRASP

• Outside ANIMA scope:
 • Gateway function for any service announce/discovery of non-OAM services
 • Produced consumed directly by non-network infra (clients)
 • Not limitation of technology but of ANIMA goals:
 • GRASP flooding (with ANI or modified underlying transport) could be alternative to draft-ietf-dnssd-hybrid
 • Technically: Flooding in GRASP makes solution more applicable to services with dense client distribution (everybody needs to know about these services).
References / details

• Presentation of DNS-SD draft in ANIMA on Monday

• draft-ietf-anima-grasp
• draft-ietf-anima-autonomic-control-plane (ACP)
• draft-ietf-anima-bootstrap-keyinfra (BRSKI)
• draft-ietf-anima-stable-connectivity (NOC services framework)