3 Years On: Open Standards, Open Source, Open Loop

David Ward dward@cisco.com
2017.11.16
WHAT HAPPENED TO DWARD WRT OSS IN 3 YEARS?

Board Member: ATIS, Linux Foundation, Cloud Foundry, Open Networking Automation Platform (ONAP), OpenDayLight, OpenNFV, SNAS, FD.IO, Advanced Imaging Society, Entertainment Technology Center, ONOS, Platform for Network Data Analytics

Catalyzed: Critical Infrastructure Initiative, Hyperledger, Magen, CNFC, OCI

- Create a community of developers working on networking
- Bottomline: How can we move industry through infrastructure phase faster by producing communities, code and standards more efficiently. Industry and operators were stalling.
 - Run a number of different structures, funding models, community development
Numerous outrageous claims proved by emphatic assertion!

SDOs and OSS need to have a healthy relationship.
I. WHERE THEY WENT

- Still Potential for IETF to Engage w/ OSS communities
- OSS communities formed around networking
- “Stacks” “Controllers” “Virtual Fubars” quite fractured
- Community Aggregation
- Other SDOs working towards new trajectories that include OSS, direct contributions
- Industries have moved: OSS == SDO
- Stacks have new DIY cycle
- Career paths forged in OSS and now part of job satisfaction
POTENTIAL OUTCOME: IETF TAKES LEADERSHIP ROLE

The IETF has leverage-able experience in:
• Protocol definition
• Architecture definition
• Modeling languages

The IETF has RIGHT FOCUS
• Not too broad (e.g. not Health & Safety, etc.)
• Not too narrow (e.g. single service domain)

• APIs Platforms and Frameworks WILL be the future standards front for software driven network architectures
• Same standardization reasoning applies to these higher level concepts – system design, interoperability, and choice.
WAS: MAKING THE IETF AGILE

IETF91

Reform and restructure

• Cut the cycle time on EVERYTHING
• Fail fast and finish faster!
• More BOF -> WG, WG->DONE
• Fewer “dead” drafts but more tangible/usable output

Adapt the liaison process

Generate more code and ideas

• Sponsor more research
• Encourage more demo (functionality and interoperability e.g. SRv6)
STILL TRUE: SDO GEEKS != OSS GEEKS

Realize you can’t do everything and augment IETF capabilities

- You don’t NEED to own everything – learn to depend on collaborators
- You probably don’t WANT to own everything – it will fundamentally change your core community
- Enable the organization to shift focus beyond what’s hot or deposited on the doorstep (be strategic)
- Open door, we’ll help standardize … must be more proactive

- OSS - Code may be “coin of the realm” but code isn’t normative.
- SDO - It’s hard to define APIs if you are not generating code!
- Modern Consensus is represented in the code by coders not at the mic or in .txt

- IETF consensus != Coder consensus model
SHOULD HAVE: FORM A COLLABORATIVE LOOP

IETF91

What the SDO/OSS relationship could look like

- Regular communication between IESG and reputable OSS Foundations
- Solicit OSS leaders to standardize (engage on reference implementations)?
- New Project Planning
 Relationship to existing or new standards
- Existing Project Review
 Standards compliance
 Standards potential

Minimally Tooling built to have standards and dependencies in a RCS that is open and accepts contributions
EMBRACE "GOOD" OPEN SOURCE

IETF91

Proven, Neutral 3rd Party Mgmt
Linux Foundation
Apache Foundation
OpenStack Foundation

Well-aligned, Productive Projects
Utility vs. “Dead-Code Repository”
Integrating IETF Protocols
Using IETF Tools (YANG)

Does this even apply to open source and how:

Is it stable, mature, and immutable (except for errata)? Stable means that there are not expected to be frequent updated versions. Mature is equivalent to being at least similar to a Proposed Standard RFC. Immutable means that the referenced content is not expected to change after RFC publication, except for minor error corrections. This might be achieved by referencing a particular dated version or a subsection of the document.
OPEN SOURCE PROJECTS
TAXONOMY

• Components
 Projects that address a narrowly defined problem whose output may be consumed as an atomic entity. Examples: VPP (virtual switch), a platform plug-in to integrate new hardware or software.

• Platforms
 Projects whose scope encompasses multiple components to yield a framework that can be adapted to meet a range of different user needs. Examples: OpenDaylight, FD.IO, PNDA and OpenStack

• Open Reference Platforms
 Projects that focus on the integration of platforms and components, and are primarily used to test, demonstrate, and validate broader solutions. Examples: OPNFV NFV reference platform and MEF OpenLSO reference platform, ONAP.
WHAT HAPPENED SINCE?
LINUX SDO/OSS DESIRE TO HARMONIZE

Harmonizing Open Source And Standards In the Telecom World

MAY 2017

HARMONIZATION
DRIVERS AND RECOMMENDATIONS – BIT TOO HIGH LEVEL

SDN & NFV DRIVEN

- Rise of the “Software Defined” Operator
- Software IS Eating the World
- Waterfall is giving way to Agile
- Internet Time is giving way to Cloud Time

RECOMMENDATIONS

- **Communications**
 … communications, communications to resolve the cultural differences between standards and open source, with a focus on convergence
- **Multi-SDO/open source activities**
 …such as the Information Modeling initiative involving TMForum, ONF, ETSI NFV, OSM and OPNFV, among others
- Less formality
 …and renewed attention on definitive outcomes
- Cooperation on a revised technology adoption methodology
 …that blends standards, open source, operator-contributed use cases, and vendor-technical contributions
LF NETWORK PROJECT
EXAMPLE OF CONSOLIDATION AND ORG EVOLUTION

CURRENT PROBLEM(s)

Too many networking foundations at Linux Foundation
- Too many checks, checks too big
- Too much total expenditure
- Too many yearly “events”

SOLUTION:
NETWORK PROJECT

- ODL, FD, OPNFV, ONAP are expected to roll in initially
 - Others may or may not follow
- The technical governance of those communities stays unchanged
- One foundation and board making the business decisions in the background
II. WHAT SPECIFICALLY HAS HAPPENED SINCE IETF 91 IN THE IETF?

- Referencing OSS in drafts/RFCs
- Live Standards - YANG Catalogue
• OSS projects are not necessitating formal documents or structure. Their "authority" are in their community and code and viable functionality
• There is a speed mis-match in these “instruments”.

Pitfalls To Avoid
Becoming “scribe” for existing code OR missing shift
• OSS projects do not always generate “multiple interoperable instances” but instead one iteratively derived reference implementation
 First to broadly acceptable solution will generally win. And an alternate solution has to be better to displace it or new/better implementation to overcome issues
Other questions that arise:
- How do WG pick projects? Purely draft to draft?
- What are the health/longevity metrics for tech or community?
- What is an OSS reference? Is it one-size-fits-all or are there nuances: The transport protocols are one thing, APIs are another, Schemas are another, state machines, events, tooling, etc.
- There may be different aspects of an OSS project that you want to reference and not others (at the very least)
A YANG model catalog and registry that allows users to find models relevant to their use cases from the large and growing number of YANG modules being published.

UTILITY of Tooling

- NETCONF and REST (not RESTCONF-compliant yet) server loaded with the YANG module from draft-clacla-netmod-model-catalog
- 1. YANG Validator, a web frontend that allows for validation of YANG modules & IETF drafts.
- 2. YANG Search, a web frontend for searches over the content of the module catalog.
- 3. YANG Metadata. View a module's metadata details.
- 4. YANG Impact Analysis tool.
- 5. YANG Suite that includes a YANG browser and RPC-builder application
- 6. YANG Regex Validator to experiment with W3C YANG "pattern" statements

- APIs accessible via REST with JSON results

Programming and monitoring the PNF (and VNF)!
Extractable or manually maintained metadata, to assess a YANG module

Are there similar health metrics for OSS projects?
Impact analysis visualisation in case of (non backward compatible) changes

Organizations: IETF, IEEE, BBF, MEF, openconfig, vendor, etc.

Operators: for service composition
MANUAL SDO/OSS DEPENDENCY MAP
EVERY AD/IESG/IAB SHOULD HAVE ONE, PER TECHNOLOGY

- If it can’t be done via tools, it must be manual.
- The ones in red (here) are YANG-based, for data modeling driven management.
YANGCATALOG LESSON
THE RFC # SHOULD NOT BE THE ONLY METRIC FOR IETF SUCCESS

- In OPS, the product of the IETF is not just the RFC ids but the YANG models inside
- Adopt an operations focus - deliver the goods in a non-ambiguous manner
- Add value in toolchain and metadata
- Encourage community interaction through Collaborative work externally

“automation is a good as the data models, the model metadata, and the toolchain”

Number of standard-based YANG modules: 300
Number of unique YANG modules into yangcatalog: 2675
YANGCATALOG LESSON
DEVELOP FOR YOUR SDO AND OSS “CUSTOMERS”

- Operators, who want to automate following the data-model driven management paradigm
- SDOs/OSS projects that want to integrate YANG models and related technologies
- All WGs in the IETF, who wants to create YANG modules
- Everybody wants to understand the technology
- Developers/vendors who want to do YANG module testing

YANG catalog created for all these audiences in mind: module users, module designers, module testers, with an educational goal
YANGCATALOG
PROCESS AND FUNDING == FUTURE SUCCESS

• Process: Closer integration
 • Ex: Run the IETF process on YANG modules
 • Ex: No obsolete tags in YANG modules
 • Tighter integration in the IETF datatracker and IETF process
• Funding
 • Developed during IETF hackathon and with private funding
 • How to move from experimentation to maintenance?
 Note: The YANG catalog is as good as its content
 • How to fund the next set of tools?

Is the IETF able to maintain the tools or is the catalyst to build an open source community and/or non-profit foundation
POST91: ONEM2M EXPERIENCE:
ANOTHER EXPERIMENT A LA YANG CATALOGUE
PATCHWORK JUNGLE OF CONSORTIA, STANDARDS, OS-PROJECTS

• Which groups actually specify technology, which are just doing marketing & promotion?
• Which technologies are used / will be used in M2M/IoT?
• Which technologies are overlapping or complementing each other?
ORGANIZATIONS IN IOT STACK

Access
Service Layer
aka Service Platform
Middleware
Enablement Platform

Protocols

Applications
Custom IoT Applications

CoAP
RTPS
MQTT
HTTP
WebSocket
DTLS
UDP

IP
IEEE 802.15.4
IEEE 802.11
LoRa
IEEE 802.1TSN
Wired

Presentation
Session
Transport
Network
Link
Physical
M2M: INTERWORKING

Standard(s) Dependency Mapping

Proximal Network (e.g. Home)

Private Network (e.g. Industrial)

Mobile Network

Possibly other LPWAN

Bluetooth

Edge Routing

Proxy

LTE NB-IoT

Cat-M

Private Network (e.g. Industrial)

Mobile Network

Possibly other LPWAN
III. POST-IETF 91 IETF HACKATHON - EXPERIMENTS WITH RELATED OSS PROJECTS
IETF HACKATHON
SUCCESSFUL EXPERIMENT

- Cisco DevNet brought to IETF 92, March 2015
- Funded and ran for 2015 (3 per year)
- Advance pace and relevance of IETF standards
- Leader of Hacks from Private funding
- Attract new/young people to IETF
- Open Source – though repo/community outside IETF governance
- Hackathon adopted as part of IETF schedule
- Semi - Rotating sponsorship for funding
- Running Code ([RFC 6982](https://rfc-editor.org/6982.html))
IETF HACKATHON
HISTORICAL PARTICIPATION

Attendance

Hackathon Attendance

- Hackathon
- HackOnly

© 2017 Cisco Systems, Inc. All rights reserved.
IETF HACKATHON
DRIVING ATTENDANCE AND FUNDING

DRIVING ATTENDANCE

- Survey not taken before IETF 99.
- Hackathon appears to be driving new IETF participation.
- A growing % of Hackathon participants are Hackathon-only.

FUNDING

- IETF 92-94: Cisco sponsorship, covered actual costs
- IETF 95-97: Huawei $40k/meeting
- IETF 98: Ericsson $10k, Mozilla $5k, Cisco DevNet t-shirts
- IETF 99: No sponsor, Cisco DevNet t-shirts HAD TO CLOSE REG EARLY BECAUSE OF SPACE & FOOD FUNDING
- IETF 100: Cisco $40k, Cisco DevNet t-shirts
- No sponsors identified yet for IETF 101 onward.

SPONSOR MODEL IS FAILING!
http://pnda.io Simple, scalable open source data platform provides a common set of services for developing network and service analytics applications.

http://fd.io Simple, scalable open source data plane toolkit enables early code development and rapid deployment. Avoid nominally specifying protocol with REAL implementation residing elsewhere (e.g. OpenFlow). Interop becomes (nearly) free (e.g. Segment Routing).

https://www.opendaylight.org Simple, scalable open source control and management plane toolkit (SDN platform) for developing networking applications (e.g. LISP). Used as middleware in projects like ONAP. Model-driven modular software design.
AND A LONG LIST OF OTHERS

- Thor video codec: https://github.com/cisco/thor
- Daala video codec: https://github.com/xiph/daala
- NAT Tools: https://github.com/NATTools
- DNS Utilities: https://github.com/getdnssapi
- OpenDNSSEC: https://www.opendnssec.org/
- Kea DHCP server: https://www.opendnssec.org/
- OpenWSN: https://openwsn.atlassian.net/wiki/spaces/OW/overview
- RIOT: https://riot-os.org/
- YDK YANG Development Kit: https://github.com/CiscoDevNet/ydk-py
- OPNFV: https://www.openfv.org/Sysrepo: https://github.com/sysrepo
- COSE working group implementations: https://github.com/cose-wgNsh-sf-devkit
- NSH Service Function Dev Kit: https://github.com/dcdolson/nsh-sf-devkit
- Joy: https://github.com/cisco/joy
- The Trusted Domain Project: https://github.com/trusteddomainproject/I2
- NSF Framework: https://github.com/kimjinyong/i2nsf-framework
- Let’s Encrypt: https://github.com/letsencrypt
- NEAT https://github.com/neat-project
- DDOS Open Threat Signaling: https://github.com/nttdots/go-dots
- IPv6 Multiple Provisioning Domains: https://github.com/IPv6-mPvD
- Multipath TCP: https://github.com/multipath-tcp
- RPKI RTC Client C Library: http://rtrlib.realmv6.org/
- Magen https://github.com/magengit

THAT’S A LOT OF STUFF!
WHAT TRAJECTORY ARE IETF AND OSS CUSTOMERS/OPERATORS ON?

SIMPLIFICATION & EXPERIMENTATION

• Simplification via rejection of unnecessary technology (albeit based on stds)
 Fewer protocols to deliver services
 Less state to manage
 More control
 More automation

• Move to open source “to be able to learn how it works”
Bag of existing Protocols

- 802.1Q, 802.1ad
- IPv4
- PPPoE
- IPv6
- MPLS
- L2TP
- PWE3
- ISIS
- OSPF
- RSVP-TE
- LACP
- MC-LACP
- MP-BGP
- LDP
- LDP-TE
- IP OAM
- MPLS OAM
- Ethernet OAM
- STP
- G.8032
- RADIUS
- SNMP
- Syslog
- Netflow
- SSH CLI/XMI

Next Gen. Protocols

- SRv6
- SR (MPLS)
- ISIS
- EVPN
- BGP
- PCEP
- IP OAM
- gRPC
- NETCONF/YANG
- SSH

Key enablers for

- Reducing operations complexity
 - Simpler to provision
 - Simpler to automation
 - Simpler to repair
 - Simpler to integrate
 - Simpler to operate
 - Foundation for service orchestration

OSS

- Less State in the Network = Less Resources Required
- Less Decisions in the Network = Less Chances for Errors

"with only few key protocols we can have a whole set of options to address challenges while making this programmable"

Material by Daniel Voyer and Daniel Bernier presented at Cisco NAG ‘17

Not enough space on the slide! Too much junk...
PROVIDER PERCEPTIONS

SDO VS OSS

• OSS
 “We use Open source in projects because it’s simple and its fast. It’s fast because you can download the code and get to work straight away. Most open source is relatively simple because it was usually designed to solve a specific problem, but if the software is complex, we have source so we can extract the parts we need to create a simple solution” -Adam Dunstan (CenturyLink)

• SDO
 “People tent and expect to solve everything within a protocol which makes the protocols overly complex and “slow” to develop.” -Daniel Voyer (Bell Canada)
POST91 INDUSTRY COMPARISON: OTHER SDO’S MAKING TRAJECTORY CHANGE
The MEF is the driving force accelerating the industry transition to agile, assured, and orchestrated services ... that ofocus on what license rights are expected to properly engage with open source community projectsffer user-directed control over service capabilities and cloud connectivity.
MEF CHALLENGES OVER LAST 7 YEARS
RE-INVENTION

- Victim of own success
- Carrier Ethernet Network Services deployed globally
- Now what?
- Move up the stack to L3-L7
- Lifecycle Service Orchestration (LSO) for Next-Gen Networks Services
- LSO architecture and APIs
MEF OPEN INITIATIVES
LEADERSHIP DRIVEN

- Run by MEF Office of the CTO, Advisory Board, Members
- Includes OpenLSO and OpenCS projects, MEFnet, LSO Hackathons and the MEF UNITE program
- Mission: Benefit industry by creating reference implementations for standards defined components for Next Generation network services
LSO HACKATHON
OSS KEY TO RESTRUCTURE

• Cisco DevNet introduced MEF to hackathon at GEN15, Nov 2015
• Funded by MEF, run by DevNet
• Transformed LSO architecture and APIs into running code
• MEF restructured with hackathon and open source as key components
• Privately funded
MEFNET INFRASTRUCTURE INVESTMENT

- Storage and compute platform
- Hosts reference implementations based on open and commercial software
 - OpenLSO projects, OpenCS projects
 - LSO Hackathons
 - MEF Software Developer Community
- OpenStack deployment
What Makes MEF Different?

Bounded Architecture, Bounded Target

- MEF 3.0 Global Services Framework
- Service Descriptions
- Multi-domain API framework(s)
- Intra-Operator Open APIs Model
- ONF partner (TAPI)
- Inter-Operator API
- ONAP, TMForum partner
- Customer/Business Interface
- Sonata (MEF) SDK
- Multi-level interconnection
- Biz level
- Orchestration level
CROSSOVER OSS INTEREST

MOST POPULAR HACK TOOLS IN MEF & IETF HACKS

<table>
<thead>
<tr>
<th>TOP 3 TOOLS</th>
<th>OVERLAPPING USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEF</td>
<td>OpenDaylight https://www.opendaylight.org/</td>
</tr>
<tr>
<td>MEF</td>
<td>ONOS: http://onosproject.org/</td>
</tr>
<tr>
<td>MEF</td>
<td>OPNFV: https://www.opnfv.org/</td>
</tr>
<tr>
<td>MEF</td>
<td>YDK YANG Development Kit: https://github.com/CiscoDevNet/ydk-py</td>
</tr>
<tr>
<td>MEF</td>
<td>Sysrepo: https://github.com/CiscoDevNet/ydk-py</td>
</tr>
<tr>
<td>MEF</td>
<td>PNDA: http://pnda.io/</td>
</tr>
<tr>
<td>MEF</td>
<td>SNAS: http://www.snas.io/</td>
</tr>
<tr>
<td>MEF</td>
<td>I2NSF Framework: https://github.com/kimjinyong/i2nsf-framework</td>
</tr>
<tr>
<td>MEF</td>
<td>ONAP: https://www.onap.org/</td>
</tr>
</tbody>
</table>
POST91: FRACTURING OF THE INDUSTRY,
FIGHT FOR SDO RELEVANCY,
DEFEND “TERRITORY”

Other Examples of attempted “restructure” or
“resetting trajectory”
THERE ARE A LOT OF SDOs
HOW LONG WILL THEY BE INDIVIDUALLY RELEVANT?

Lots of SDOs. Minimal success in making the SDO + OSS "turn".

• Where do we make the most impact?
• What will be relevant going forward?
• Are gaps forming we should be addressing?

What works for the IETF may not work for ALL. The answer to “have we done enough?” is NO

Claiming standardization responsibility for technology that has already been “defacto” standardized by an OSS community.
OPEN SOURCE PARTNERSHIPS
CHOOSE WISELY

There are a LOT of OSS “sources” and partners:
- Foundations - at least 8 major foundations relevant to our work
- Loose Projects - lots of unaffiliated projects under Github
- Massive Organizations - use open source as a market moving force

- OSS as strategic market and tech development tool by large organizations is unstoppable
- Interdependency requires SDOs to develop competencies, cultures and communities and outreach of their own
- Liaison Mechanism Failure
SDO STRUGGLES: OTHER ATTEMPTS BUILDING COMMUNITY + CODE

- Has code and sponsored projects: C3 - PNM, TruView, OpenRPD LoRaServer.io
- Not traditional OSS. Community is small/specific
- CL IPR wrapper “a little different” than common OSS

- Difficult architecture specification (API?) hinders OPNFV (System Install/Test)
- Multiple project merge hinders ONAP (Automation Platform)
- LF pulling together projects and building community.

- SG12 QoS/QoE effort with PNDA just launched
- Alliance w/ NGMN still not attracting code or community (OpenAirInterface?)

- Standardized OF - didn’t control data plane reference implementation (OVS).
- CORD - ONOS control plane codebase. Open Source License
- Tightly controlled (closed) community for controller core

- “Catalyst” 5G PoC in 2017 (2nd year) is collaboration of existing members.
- Two “Open Hacks” in 2016. Mostly developing on vendor or forum provided APIs.
- Attempts like OpenOSS (APIs on SourceForge) are essentially APIs w/o software.

Positive
Neutral
Negative
Loosely coupled “certification and test” relationship between SDO and OSS.

The reputation for JCP specs became so bad that the community would ignore them until Apache (open-source implementations of JCP specifications) had fixed the problems.

Apache leaves Java SE/EE Exec Committee in dispute with Sun over JCP “open specification process” in Dec 2010.

Bad Outcome #1: “Blind” specification can lead to SDO irrelevance. OSS project becomes authority.
MODEL: CERTIFICATION AND TESTING
CURRENT - ETSI/OPNFV FAIL

- Arguably, even looser “certification and test” relationship.
- OPNFV has a certification program in the works for years now.
 They are ready to launch and are currently in beta.
 https://cvp.opnfv.org/#/
 For the initial release, all they test is Openstack APIs (“Refstack ++”??).
- OPNFV does NOT certify against ETSI NFV framework per se
 (weak untestable specification - see JCP). OPNFV have
 chosen their own set of tests.
 OPNFV DOES implement a set of ETSI test cases, i.e. the
 “Yardstick” test tool implements parts of ETSI TST 001, but this is the
 minority of work - there are many more tests that go beyond ETSI.

Bad Outcome #2: “Blind” specification can lead
inability to certify or test (more irrelevance).
MODEL: CERTIFICATION AND TESTING
CURRENT - 3GPP/GCF SUCCESS?

- April 2016 GCF signs partnership project agreement with 3GPP
 “GCF Certification includes conformance, interoperability and field testing for the following 3GPP radio access technologies (RATs), and their extensions, in the frequency bands.”
- Stated Benefits:
 Reduce manufacturer testing costs
 Shortens time-to-market for new handsets and devices
 Improves product quality
 Raises the overall quality of device interoperability

What factors make the loosely coupled “certification and test” relationship work? Tighter specifications, more upfront vendor involvement and tooling/infrastructure?
MODEL: REFERENCE DESIGN DRIVEN
OPEN SOURCE HARDWARE

CONSOLIDATED

• New approach moves beyond loosely coupled certification and test. Success coupled to reference designs
 Jumpstart ecosystems, promote interoperability
 Move at pace of SW, defining new system architectures and solutions

SCATTERED

• TIP consolidates a number of projects under its umbrella, but many other similar project instances exist - with scattered ties to multiple SDOs.

Good ideas, lots of potential, Operator Driven
Need track the dependencies and references and use cases
1. Standard Partnerships
 • W3C, Genivi, Zigbee, OMA, HDMI, IPSO, CEA…
2. Ref designs
3. Certification - OCF, UPnP, AllJoyn
4. OSS Community
5. Device models
 OneIoTA.org contains live data models in a web-based tool that automates the process of quickly adding new devices to a network, regardless of location. (RAML & JSON Schemas)
6. Membership funding

https://openconnectivity.org/
MILD TANGENT – A FEW WORDS ABOUT PICKING AN OSS PARTNER

Because it’s OSS, it’s not magic and noone is riding unicorns on rainbows … it’s hard work by very diverse engineering communities with differing incentives and strategies.

Slides of project logos, Garner Hype-cycles and Make-me-a-unicorn marketing machines are extremely deceiving.
STANDARDS + OPENSOURCE
INDUSTRY BASELINES WITH LF

OSS defines
- PaaS/Application Layer
- Orchestration

OSS leads, SDOs complement
- Network Data Analytics
- Service Models
- NFV Architecture

SDOs lead, OSS for rapid GTM
- Network Telemetry
- Network Models
- Network

SDOs
- < empty >
- < empty >
- SG12 E.INADF
- TOSCA
- NFV ISG
- IPFIX
- BGP Monitoring Protocol
- YANG models
- Segment Routing
- In-Situ/In-Band OAM

Open Source Projects
- CLOUDFOUNDRY
- kubernetes
- pnda
- ONAP
- SNAS.io
- Open Daylight
- ONAP
- OPNFV
- ietf
- ietf
- ietf
SDO/OSS PARTNERSHIP
WHAT IS GOAL?

Standards
- IETF
- TM Forum
- MEF
- GENIVI
- OneM2M
- JDF
- OASIS
- Enocean
- ULE
- AMS
- Global
- Invetures
- OMG
- Virtual
- VTM
- IEEE
- ETSI
- BBF
- Fraunhofer

Software
- GitHub
- OpenStack
- Eclipse
- LF
- Project Haystack
- Apache
- Linaro
- W3C
- SourceForge
- GenieACS
- SFC
- SPI
- FSF
- SFC
- CableLabs

"FREE"
- Open Compute Project

"Open"
- "FREE"

"Closed"
- "FREE"

SINGLE COMPANY:
- MONGO
- ANDROID
POTENTIAL FOR AGGREGATION OF SDOS

- If not irrelevant, SDOs may become niched and probably aggregate together.
- Small communities of folks that come together in a bigger meeting because their own can’t be afforded.
POTENTIAL FOR SMALL FISH IN LARGE AQUARIUM
JOURNEY TO OSS BASED PRODUCTS & SERVICES

• Some companies had a short journey: Google, Netflix, Lyft

• Some were successful users of OSS in transforming business: MSFT

• Most traditional (paper) SDOs

Ignorance → Resistance → Deep Resistance → Whitewashing → Experimenting → Embracing

Ignorance → Resistance → Deep Resistance → Whitewashing → Relevance? → Niche-ification
SDO + OSS
PARTNERSHIP NARRATIVES

- Potential SUCCESS - Friendly & Aligned IP policies (W3C, IETF)
- Potential failure - Can’t break from confidential development of standards and traditional IP licensing (RAND) (ETSI, IEEE, ITU)
- Potential failure - Can’t solve financial model (e.g. IEEE charges $40k to setup a new project, nothing after)
 No marketing, events, DevOps, etc.
- Real threats - New IPR model (e.g. ISC, BSD, MIT) VS RAND Undermines open source distribution, challenges open participation
 RAND is conceding software patents

OSS isn’t in the SDO DNA. Hire or use experts to guide and manage community/developer outreach
MANAGING IPR

• For most OSS projects only IPR terms are the OSS license
 • Pros: Lightweight, fast, low barrier to contribution
 • Cons: Rights conditioned on license compliance, license can’t be changed, multiple owners, no check on 3rd party IPR issues
 • Trend away from strong “copyleft” like GPL toward more permissive licenses like Apache 2.0 and BSD/MIT in recent years
• Major projects usually govern IP with additional terms like a Contributor License Agreement (CLA) or formal IP Policy
 • Pros: More flexibility, control, assurance (assignment, relicensing, provenance warranties, rights not terminable, patent policies)
 • Cons: Creates more overhead around contributing
 • But, orgs like Linux Foundation beginning to offer template CLAs, IP Policies, and other governing docs to help scale
IPR PITFALLS

• OSS community expects “open source” means sw will be usable by anyone for free without additional license
• Standards world beginning to see value in OSS methods
• RAND licensing conflicts with open source principles
• Some pushing for copyright-only “open source” projects that will require RAND patent royalty to use
• Highly controversial with OSS community and most SDOs, redefines open source and induces users to incur liability
• Recent problems surrounding Facebook’s React.js patent rider highlight why alignment is key
IV. MOVING FORWARD

- TINKERER/BUILDER
- PAPER PUSHER
- COMMUNITY BASED CODER
- INDUSTRY AND AD HOC STANDARD CREATOR
- INDUSTRY CATALYST
- MULTI-COMMUNITY INFLUENCER
Actively reach out to engage with OSS or wait for them to find IETF and help them figure out their problems on their terms.

Identify emerging problems and *start* open source projects and other related SDOs with applicable communities to write code to solve and standardize solutions.

Do nothing.
DON’T LOOK AT THE WORLD THROUGH A KEYHOLE

- We are in a world where SDOs, OSS have created dependencies on each other

- We have to accept the role of the SDO or project or community in the larger industry

- We need to land changes … over the next 18 months; make internal and external entities part of that dependency map

- Enable sponsored tooling, support, community outreach and infra via new vehicle

- Create view of industry via dependencies
OBSERVATIONS ON OSS PROJECT GENESIS
LESSONS APPLICABLE TO IETF?

- LF Harmonization is placed in an SDN/NFV context. IETF put entire topic into IRTF and completely missed the boat, produced little.

- OSS/SDO projects (ETSI/ONF) create partial/incomplete specifications, leave spotty implementations and closed groups.

- IETF COULD seek out projects, (re)organize in an agile way, stop irrelevant projects.

SPIFFE/SPIRE blow right past IETF consensus process. Standardizing and OSS’ing in the community.
A PLATFORM OF PLATFORMS
PULLING IT ALL TOGETHER

• Yangcatalog and M2M are models for how we organize the fracturing of the industry, and stop the brownian motion between multiple SDOs and OSS

 Intuit how/if SDOs and OSS projects are working together … see the dependencies in a shared solution space.

• We need metadata to enrich those models:
 • We need a health metric of OSS projects. How can a consumer predict survival, assess efficacy?
 • We need a health metric of SDOs. We certainly need one for the quality and relevancy of specifications
IETF100 RECOMMENDATIONS
IASA2.0 IS THE STARTING LINE

- Publishing a RFC SHOULD not be the metric for IETF success
- A technology is successful when it’s deployed
- If there is no way to automate a feature, it doesn’t exist
- Develop tooling & metadata at the same time as specification
- Be faster or iterate
- Community and dependencies larger than email list
- Create your dependency map and reach out to your IETF “customers”
- Fund or partner or expand to build/maintain tools

Change the IETF process to be centered around the products of the RFCs NOT the ID#