
Cache Digest (IETF 100)

Cache Digests for HTTP/2
Kazuho Oku

Cache Digest (IETF 100)

• proposes:
– SENDING_CACHE_DIGEST SETTINGS Parameter
– switch to Cuckoo hashing
– thanks to Yoav Weiss for the proposal

Pull Request #413

Cache Digest (IETF 100)

• a SETTINGS parameter sent by client
– “I’m going to send CACHE_DIGEST, so the server should

decide what to push after seeing the digest”
• discussion:
– CACHE_DIGEST frame has “origin” field. Do we need to

associate the flag to each origin, or is SETTINGS parameter
fine?

– do we need a way to retract the announcement?
• i.e. “I said I am going to send CACHE_DIGEST, but I cannot”

SENDING_CACHE_DIGEST

Cache Digest (IETF 100)

• client-side:
– no need to iterate through the browser cache when generating

the CACHE_DIGEST frame
– the hash becomes a persistent structure in the browser cache
• allowing O(1) insertion and removal of URLs
• O(N) when resizing happens

– resizing requires additional data to be associated to the entries of the hash

• server-side:
– no need to decode the frame before lookup

• digest becomes slightly(?) larger

Switch to Cuckoo Hashing

Cache Digest (IETF 100)

• what should we include in the digest?
a) hash(URL):
• meaningless for stale-cached responses
• waste of bandwidth if the majority of cached responses are stale

b) hash(URL+etag):
• server needs to know the etag of the resource it might push in order to

determine if it should push
• client needs to respect (i.e. save) the pushed response even if it

already has a freshly-cached object with the same URL
• pull request proposes b

Cuckoo Hashing – no distinction bet. fresh vs. stale

Cache Digest (IETF 100)

• a) replace Golomb Coded Sets with Cuckoo Hashing?
• b) define both algorithms?
–might not be an option due to the stale vs. fresh distinction

• c) stick to using Golomb Coded Sets
– can be generated by browser from Cuckoo Hash with

additional data

Cuckoo Hashing – the options

