
draft-ietf-i2nsf-capability-00
Development Plans

L. Xia, J. Strassner, C. Basile, D. Lopez

I2NSF Meeting,
Singapore,

November 14th, 2017

 Policy Enforcement Defined by Capabilities

 Capability: the functions that an NSFs provides, independent
of the customer and provider interfaces

 An abstraction with well-defined semantics

 Flexibility to represent functionality that can be either
vendor-dependent or -independent

 This Draft

 Defines the concept of NSF Capabilities and their use

 Information model – characteristics and behavior in a
protocol-, platform-, and vendor-independent manner

 Info model defines a common lexicon for multiple data
models

 Capability Algebra – ensure that actions of different Policy
Rules do not conflict with each other 2

Introduction: the Context

 Policy Rules Describe, Define, and Manage Capabilities

 Policy Rules can be used to govern definition, configuration, monitoring,
visibility, and usage of Capabilities

 For example, Policy Rules can define:

 What is or is not a Capability

 What Capabilities can be exposed to which consumers

 Which OAM data is exposed to which consumers

 Capabilities Define Reusable Functionality that is

Manipulated by Policy Rules

 Capabilities abstract the functionality of network elements into reusable
objects that are used as building blocks to provide security features

 Capabilities can be combined to provide more powerful features that are
made selectively available to consumers (via Policies)

 Capabilities enable security protection to be customized to suit the needs of
the applications using it in a given context without relying on specific
technologies or even vendors

3

Policy Rule – Capability Duality

 Security is independent of physical vs. virtual packaging

 Security is described by one or more Capabilities

 Policies define how to manage Capabilities

 Policies are defined in an object-oriented info model to

maximize interoperability

 This enables

 An infinite number of NSFs to be described and managed

 An infinite number of Policy Rules to be defined to manage NSF behavior

 Capabilities and Policy Rules to be reused as is, or for building more
powerful Capabilities and Policies

4

Key Abstractions

 The Current Model Uses ECA Policy Rules

 Events: significant occurrences the NSF is able to react to

 Conditions: how the NSF decides which actions to apply

 Actions: what operations to execute

 PolicyRule: a container that aggregates an Event, a

Condition, and an Action (Boolean) clause

 Behavior

 Actions MAY execute if Event and Condition clauses BOTH

evaluate to TRUE (both clauses are Boolean clauses)

 Controlled by resolution strategy and metadata

 Capability Algebra used to make resolution strategy decidable

 Default actions MAY be specified
5

The ECA Policy Rule Model

Conceptual Operation

6

External Info Model

SecurityPolicyRule NSFMetadata

SecurityCapability

DescribedBySecurityCapability

DescribedBySecurityCapabilityDetail

0..n

0..n

ManagesSecurityCapability

0..n

0..1

 Improvements / extensions to consider for the next revision of
this draft

 Event clause / Condition clause representation

 e.g., CNF vs. DNF for Boolean clauses

 Event clause / Condition clause evaluation function

 more complex expressions than simple Boolean
expressions to be used

 Action clause evaluation strategies

 e.g., execute first action only, execute last action only,
execute all actions, execute all actions until an action fails

 More on metadata

 authorship, time periods, (+ priorities)

 more elaborate behavior description and specification

7

Enhancements to the Capabilities I-D

 Categories and subcategories determined with sub-classing

 pros: intuitive, simple, easy to design

 cons: not very elegant, requires non-trivial maintenance at
every minor update, does not work well at run-time

 The Decorator Pattern

 Defined in 1995 (!), used in java and windowing toolkits

 much more expressive

 reduces number of objects at runtime

 provides dynamic behavior (composition) instead of fragile,
inheritance-based behavior (which is static)

8

Switching to the Decorator Pattern

 Define either an Appendix or a separate I-D to define and
describe other patterns

 Patterns are templates that provide an abstract solution to a
recurring situation that requires modeling

 Large library of templates exist, but little use in networking
(and especially security)

 Next version of draft will restructure content to make maximal
use of templates

 Enables scalable solutions to be prototyped

9

More Patterns

Questions?

Questions?

“Create like a god. Command like a king. Work like a slave”

- Constantin Brancusi

