neət

Horizon 2020 European Union funding for Research & Innovation

Congestion Metacontrol to achieve a Deadline Aware Less than Best Effort service

David Hayes

together with David Ros, Andreas Petlund, Iffat Ahmed, Lars Erik Storbukås, and Hugo Wallenburg

ICCRG 13 November 2017

Motivation

- Many bulk transfer applications do not need to send as fast as they can.
 - data-centre synchronisation
 - client to cloud backups
- They can send in a Less-than-Best-Effort (LBE) way
 - Avoid disrupting more quality constrained flows

Motivation

- Many bulk transfer applications do not need to send as fast as they can.
 - data-centre synchronisation
 - client to cloud backups
- They can send in a Less-than-Best-Effort (LBE) way
 - Avoid disrupting more quality constrained flows

Timeliness

- They often have some loose timeliness requirements
- A need for Deadline-Aware LBE (DA-LBE)

Deadline Aware Less than Best Effort (DA-LBE)

Transport qualities

- Keep disruption of concurrent BE interactive services to a minimum
 - Do Good react to network congestion earlier than a BE service
- Have a timeliness constraint
 - Be pragmatic adjust aggressiveness as deadline approaches
 - Do no harm never more aggressive than a BE type service

Deadline Aware Less than Best Effort (DA-LBE)

Transport qualities

- Keep disruption of concurrent BE interactive services to a minimum
 - Do Good react to network congestion earlier than a BE service
- Have a timeliness constraint
 - Be pragmatic adjust aggressiveness as deadline approaches
 - Do no harm never more aggressive than a BE type service

Our approach

• Model this behaviour and develop a framework for enabling it

Conclusion: In principle the framework allows any E-to-E congestion control to become DA-LBE

See our first publication:

D. A. Hayes, D. Ros, A. Petlund, and I. Ahmed, "A framework for less than best effort congestion control with soft deadlines", in *Proc. of IFIP Networking*, IFIP, Jun. 2017. [Online]. Available: http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf

Network Utility Maximization (NUM)

Network Utility Maximization (NUM)

davidh@simula.no 4/17

ICCRG 13 November 2017

Congestion metacontrol for DA-LBE

Network Utility Maximization (NUM)

ICCRG 13 November 2017

Congestion metacontrol for DA-LBE

davidh@simula.no 4/17

Network Utility Maximization (NUM) for LBE

DA-LBE with a homogeneous congestion control network

Congestion "price" inflation $\hat{q} = \frac{\sum p_l}{w} \text{ where } w \in [w_{\min}, 1]$ • when $w = w_{\min}$, maximum price inflation, maximum "LBEness" • when w = 1, no inflation, BE service.

DA-LBE with a homogeneous congestion control network

Congestion "price" inflation $\hat{q} = \frac{\sum p_l}{w} \text{ where } w \in [w_{\min}, 1]$ • when $w = w_{\min}$, maximum price inflation, maximum "LBEness" • when w = 1, no inflation, BE service.

Controlling price with respect to deadlines

On short packet time scales:

• CC reacts to \hat{q} as normal

On longer time scales adjust *w*:

- Relative to:
 - recent send rate: \bar{x}
 - required send rate: ζ
- PID or Model based control

Applying this to TCP Cubic

For TCP Cubic, price is packet loss or ECN packet marks

Applying this to TCP Cubic

For TCP Cubic, price is packet loss or ECN packet marks

Indirect: inflate response

Change **cwnd** reduction

- $cwnd_{new} = \beta cwnd$
- Vary β , $\beta \in [\beta_{\min}, \beta_{default}]$
- β_{\min} provides maximum LBEness

Direct: inflate price Drop additional packets • lose data • causes retransmissions Phantom ECN signals • same congestion response • no loss in data

Simple Scenario Experiments

Scenario

- 6 TCP flows start and stop at different overlapping times
 - No competing TCP flows t=[1000,1010] s
- DA-LBE flow file size equivalent to 10% capacity to deadline
- 10% random background traffic

TCP Cubic with a Cubic based DA-LBE — varying β

davidh@simula.no 8/17

TCP Cubic with a Cubic based DA-LBE — Phantom ECN

davidh@simula.no 8/17

A network of heterogeneous CCs: Different Prices and Utilities

Different network prices

- Tang, Wei, Low, and Chiang [5] maps prices to a *standard* price (or congestion signal).
 - E.g. mapping a packet delay "price" to a standard packet loss price

Issues

- Tang, Wei, Low, and Chiang required a special factor to make this work.
- More than mapping prices, CCs react differently to congestion signals

[5] A. Tang, X. Wei, S. H. Low, and M. Chiang, "Equilibrium of heterogeneous congestion control: Optimality and stability", *IEEE/ACM Trans. Netw.*, vol. 18, no. 3, pp. 844–857, Jun. 2010

A network of heterogeneous CCs: Different Prices and Utilities

Different network prices

- Tang, Wei, Low, and Chiang [5] maps prices to a *standard* price (or congestion signal).
 - E.g. mapping a packet delay "price" to a standard packet loss price

Issues

- Tang, Wei, Low, and Chiang required a special factor to make this work.
- More than mapping prices, CCs react differently to congestion signals

We build on this idea

- Composite congestion signals (delay, loss, and ECN)
- Weight (ϕ) composite congestion signals by CC reaction
- \bullet We use a weighted $\mathbb{P}[\mathsf{cong_ind}]$ to compare "prices"

[5] A. Tang, X. Wei, S. H. Low, and M. Chiang, "Equilibrium of heterogeneous congestion control: Optimality and stability", *IEEE/ACM Trans. Netw.*, vol. 18, no. 3, pp. 844–857, Jun. 2010

Applying this to TCP Vegas

Delay based part

- Congestion signal:
 - Estimate of queueing delay (Q)
- Control:
 - cwnd++ or cwnd--

Loss based part

• Halve cwnd on packet loss

Applying this to TCP Vegas

Delay based part

- Congestion signal:
 - Estimate of queueing delay (Q)
- Control:
 - cwnd++ or cwnd--

Loss based part

• Halve cwnd on packet loss

Vegas based DA-LBE

Delay based part

• inflate (or deflate) queueing delay • $\hat{q} = \frac{Q}{\phi w}$

Loss based part

- When w = 1 and packet loss
 - probabilistically ignore cwnd reduction

• rand()<
$$(1-rac{1}{w\phi})$$

TCP Cubic competing with a Vegas based DA-LBE

ICCRG 13 November 2017

Congestion metacontrol for DA-LBE

davidh@simula.no 11 / 17

TCP Cubic competing with a Vegas based DA-LBE

davidh@simula.no 12 / 17

- Shuffle traces to remove non-stationarity
 - Application session start times

neət

ICCRG 13 November 2017

Congestion metacontrol for DA-LBE

davidh@simula.no 12 / 17

achieve a particular average offered load.

DA-LBE Completion time results

• Both do not always meet deadlines

🖸 neət

less able to use available capacity

Congestion metacontrol for DA-LBE

davidh@simula.no 13 / 17

DA-LBE Completion time results

Stand alone DA-LBE in Linux (*mostly* working prototype)

Congestion metacontrol for DA-LBE

neət

DA-LBE in NEAT

What is NEAT?

- A new transport API (see work in the TAPS WG!)
 - applications request the service they need
 - agnostic to the specific choice of transport protocol underneath
- Allows deployment of new (and better) transports

DA-LBE in NEAT

What is NEAT?

- A new transport API (see work in the TAPS WG!)
 - applications request the service they need
 - agnostic to the specific choice of transport protocol underneath
- Allows deployment of new (and better) transports

Read more about it: https://www.neat-project.org/

[6] N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grinnemo, D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tüxen, and F. Weinrank, "NEAT: A Platformand Protocol-Independent Internet Transport API", IEEE Commun. Mag., Jun. 2017. [Online]. Available: https://www.neat-project.org/wp-content/uploads/2017/03/commag16accepted-version.pdf

DA-LBE in **NEAT**

What is NEAT?

- A new transport API (see work in the TAPS WG!)
 - applications request the service they need
 - agnostic to the specific choice of transport protocol underneath
- Allows deployment of new (and better) transports

Read more about it: https://www.neat-project.org/

[6] N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grinnemo, D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tüxen, and F. Weinrank, "NEAT: A Platformand Protocol-Independent Internet Transport API", *IEEE Commun. Mag.*, Jun. 2017. [Online]. Available: https://www.neat-project.org/wp-content/uploads/2017/03/commag16accepted-version.pdf

DA-LBE in **NEAT**

- DA-LBE will be implemented as a meta-protocol in NEAT
- $\bullet\,$ NEAT choosing the best underlying transport to adapt

DA-LBE meta-protocol in NEAT (work in progress)

Conclusions

Deadline-Aware-Less-than-Best-Effort (DA-LBE)

- valuable transport for bulk data transfers
 - soft deadline
 - disruption of other traffic minimised

In principle allows any congestion control to become DA-LBE

- Concepts based on NUM
 - *inflate* (or *discount*) network "prices" to achieve goals.
- Tested with TCP Cubic and Vegas
 - Delay based mechanisms generally perform better
 - Immediate ECN would have benefits of delay based mechanisms

Ongoing work

Integration into NEAT

• Modularisation of kernel elements

• Trans-Internet tests

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 644334 (NEAT). The views expressed are solely those of the authors.

Bibliography

- D. A. Hayes, D. Ros, A. Petlund, and I. Ahmed, "A framework for less than best effort congestion control with soft deadlines", in Proc. of IFIP Networking, IFIP, Jun. 2017. [Online]. Available: http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf.
- F. P. Kelly, "Charging and rate control for elastic traffic", European Trans. on Telecommunications, vol. 8, pp. 33–37, 1997.
- S. H. Low and D. E. Lapsley, "Optimization flow control-i: Basic algorithm and convergence", *IEEE/ACM Trans. Netw.*, vol. 7, no. 6, pp. 861–874, Dec. 1999.
- N. Trichakis, A. Zymnis, and S. Boyd, "Dynamic network utility maximization with delivery contracts", in Proc. of IFAC World Congress, Seoul, South Korea, Jul. 2008, pp. 2907–2912.
- A. Tang, X. Wei, S. H. Low, and M. Chiang, "Equilibrium of heterogeneous congestion control: Optimality and stability", IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 844-857. Jun. 2010.
- N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grinnemo, D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tüxen, and F. Weinrank, "NEAT: A Platformand Protocol-Independent Internet Transport API", IEEE Commun. Mag., Jun. 2017. [Online]. Available: https://www.neat-project.org/wp-content/uploads/2017/03/commag16accepted-version.pdf 🖸 neət ICCRG 13 November 2017

Congestion metacontrol for DA-LBE