Enabling ICN in 3GPP's 5GC Architecture

(draft-ravi-icnrg-5gc-icn-00)

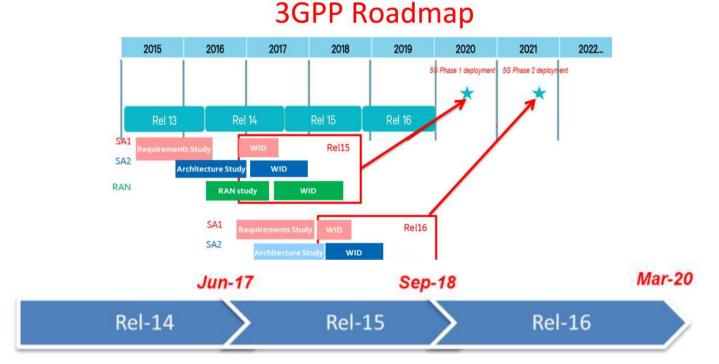
Ravi Ravindran, Prakash Suthar, G.Q.Wang <u>Ravi.Ravindran@Huawei.com</u> <u>psuthar@cisco.com</u> <u>Gq.wang@huawei.com</u>

IETF/ICNRG, November, 2017, Singapore

Draft Outline

- Motivating ICN for 5G
- Architectural differences from 4G
- 5G Core Proposal
- Enabling ICN in 5G
- Use Case Scenarios
 - Edge Computing
 - Seamless Mobility

Motivating ICN for 5G


- ICN draft [1] explores various deployment opportunities
 - 5G being one of them
- 5G hopes to serve diverse heterogeneous applications
 - eMBB, MMTC, URLLC (~1-10ms latency)
- Network Slicing (NS) technology slices UE, RAN, Transport and Core in multitenancy environments for applications
 - Granularity a slice per service instance, or one slice made up of many sub slices to serve a service class etc.
 - Dynamic Slices that are elastic and limited life span
 - End-to-end UE, Radio, Core, Cloud, Optical backbone etc.
 - Leverage NFV and SDN frameworks for programmability and service management

• NS introduces logical architectures to better serve some application classes

- Getting rid of per UE state management (GTP tunnels) in the data/control plane, e.g. considering large IoT devices
- ICN can be a slice to serve eMBB, MMTC comprising many IoT applications [2]
- ICN enables many features with a flat architecture (Naming, Security, Mobility, Multi-homing, Caching, In-network computing etc)

[1] Akbar Rehman et al, "Deployment Configurations for Information-Centric Networks", IETF/ICNRG, 2017
[2] R. Ravindran et al., "5G-ICN: Delivering ICN Services over 5G Using Network Slicing," IEEE Communications Mag., vol. 55, no. 5, May 2017, pp 101-107.

Why this is relevant ?

Note: dates above refer to official 3GPP release freeze (ANS.1 freeze)

- Rel 15 will include the first 5G-NR and 5GC specifications, considering eMBB deployment
- Rel 16 will try to address all the other requirements identified as part of TS-22.261, which includes many requirements for MMTC and URLLC use cases as well.
 - ICN could potentially be a way to address some of the requirements.

Architectural Differences from 4G/LTE

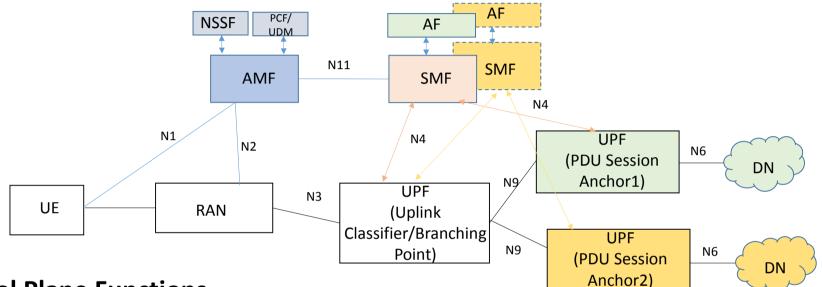
• Control User Plane Split (CUPS)

- NFV based design, unlike vertically integrated S-GW/P-GW appliances.
- Allows control and user plane functions to be elastic
- Allows introducing new control and user planes considering Network Slicing

• Decoupling RAT from the User Plane

- 5G increases the maximum spectrum boundary from 6GHz to 100GHz
- Allows heterogeneous RATs (possibly different MAC/PHY) to use diverse UP instantiations
- RAT control plane separated from the Core Control Plane

• Non IP-PDU Session support


- IPv4/IPv6/Ethernet/Unstructured PDUs
- Considering many IoT LPWAN implementations
- ICN can potentially leverage this feature and formalize it

• Service Centric Design

- Uses top-down orchestration model Application driven
- Network Exposure functions to allow other application functions to use 5G network services
- Enables Get/Put, Pub/Sub APIs instead of Procedural ones (e.g. in LTE)

5G Architecture

5G Architecture ^{[1][2]}

Control Plane Functions

- **Common control plane Function :** The NSSF and AMF are part of the NSSF allows to assign a PDU session to a particular UPF
- Slice Specific Control Functions : SMF/AF/UPFs(UL-CL, Session Anchor points) can be slice specific

User Plane Functions

- UE includes Smart phones, IoT, Industrial Robots etc/RAN offers the radio connectivity
- Forwarders that hold state to handle various PDU session states for different applications.

References:

[1] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System (Rel.15), TS-23.501

[2] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (Rel. 15), TS-23.502

5G Core Key Control Plane Functions

• AMF

- UE Authentication/Authorization
- Mobility Management
- RAN Connection Management
- Lawful Intercept
- Relay to SMF signaling

• SMF

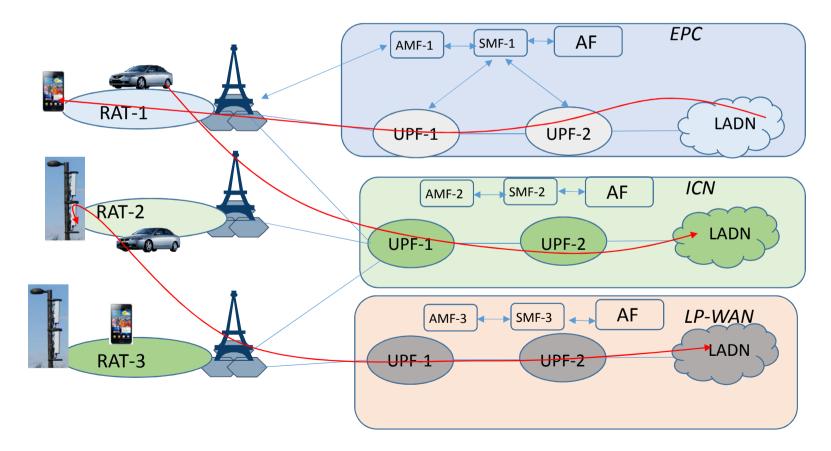
- UPF/AN Session Management
- IP Address Management
- Traffic steering
- Policy Enforcement and QoS
- Lawful Intercept
- Mobility Policy (SSC)
- Roaming between HPLMN and VPLMN

- UPF
 - Mobility Anchor Point Functionality
 - Inter-connect to desired Data Network
 - Packet routing and Forwarding/LI
 - UL-CL/Branching Point
 - QoS/Rate enforcement
 - DL buffering and Data Notification Triggering

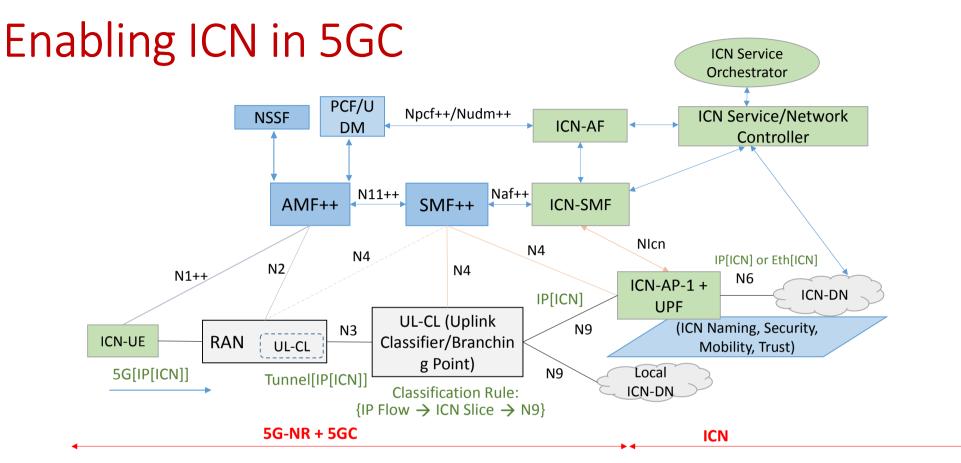
• PCF/UDM

- All used to support UE's subscription, authentication, policy enforcement in the control/user plane
- NEF
 - Exposes Network Capabilities to third party application functions

5GC User Plane Functions


- 5G-NR
 - The new radio access technology

• User Plane Function (UPF) can be a


- IP Anchor Function
 - For Mobility Support
- Branching Function
 - Supports UE Multi-homing
- Classifier Function
 - Supports Edge Computing using Local Area Data Networks (LADN)
- From a Network Slicing perspective these functions can be customized to individual services

5G Architecture Flexibility

- Allows custom control and user planes for different services.
- Same AMF/SMF can be used among multiple RATs and slices, or dedicated for each slice.

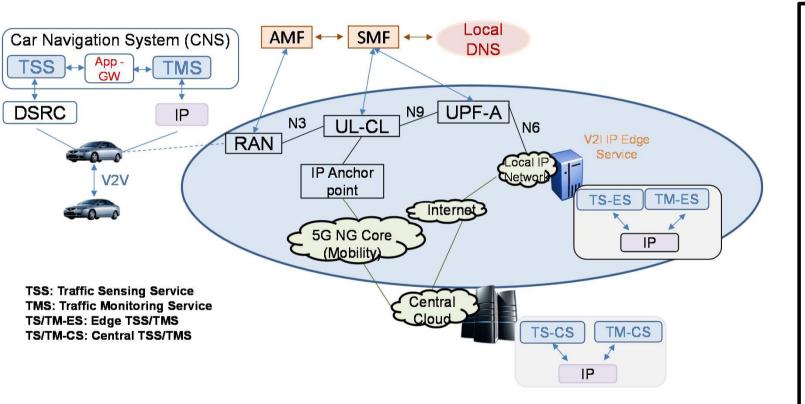
Enabling ICN in 5GC

- Here we have assumed as the IP transport being used to classify ICN Service flows.
- ICN-SMF handles session management of ICN-AP NF. AMF++/SMF++ enforce functions to allow UE subscription authentication to ICN DN, and provision rules in RAN, UL-CL and other intermediate UPFs to enable UE-ICN to anchor to ICN-AP.
- ICN-AF can push ICN PDU session requirements to PCF/UDM for slice selection or session management functions between the RAN and the ICN-AP

Control Plane Function Extensions

- ICN-UE
 - UE with ICN/IP applications with transport convergence (discussed in [1])
 - ICN Applications can be overlay but 5GC aware, or
 - Can use the Unstructured PDU provision, but standardized for ICN PDU handling, with minimal UPF functionality
- AMF++
 - Extensions to authenticate ICN-UE
 - Extensions to handle UE ICN configuration
 - Functions include Naming, Forwarding, Security and more
- SMF++
 - ICN PDU Session Configuration
 - IP address management to handle ICN flows for overlay deployments
 - UL/CL and UPF configuration to allow ICN-DN interconnection
 - Extensions to handle UE ICN configuration
- ICN-SMF
 - Manages the ICN state in ICN-AP
 - Interfaces with SMF++ for ICN PDU session management

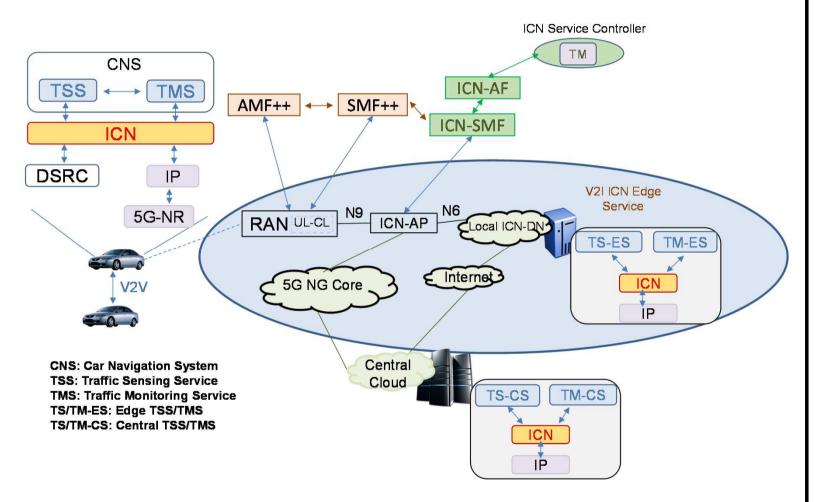
[1] Prakash Suthar et al "Native Deployment of ICN in LTE, 4G Mobile Networks", draft-suthar-icnrg-icn-lte-4g-03 (work in progress), September 2017.


User Plane Function Extensions

- Considering an incremental deployment, 5GC UPF state will exist between the AN and the ICN-DN
 - Deployment could co-locate Cloud RAN/UPF/ICN-AP functions
- UL-CL
 - The ICN PDU session classification and traffic steering to appropriate ICN-DN (Slice aware)
 - Potential extension of ICN features in UL-CL such as caching.
- ICN-AP
 - Integrates UPF function along with ICN stack
 - Mobility state to handle Producer Mobility
 - Maps the FIB to directed the Interest/Data flows to appropriate PDU session
- ICN-DN
 - Is the ICN network that offers several ICN network and application services.

Use Case Scenarios

Edge Computing
 ICN Seamless Mobility


V2V/V2I using IP-MEC

IP-MEC Challenges

- Need for Application level Adaptation
- Session Mobility handling Challenge when UE or IP of Service Instance changes
- Local DNS involvement for service resolution
- Control plan overhead when ever underlying PDU session is affected.

V2V/V2I using ICN-MEC

ICN-MEC Benefits

- Benefits from Name based networking, applications agrees on naming semantics
- Any PDU session state reset will minimally affect applications
- Mobility can be handled in the ICN layer
- Name based routing allows Name resolution to optimal Service instance

Comparison of IP/MEC and ICN for V2I/I2V

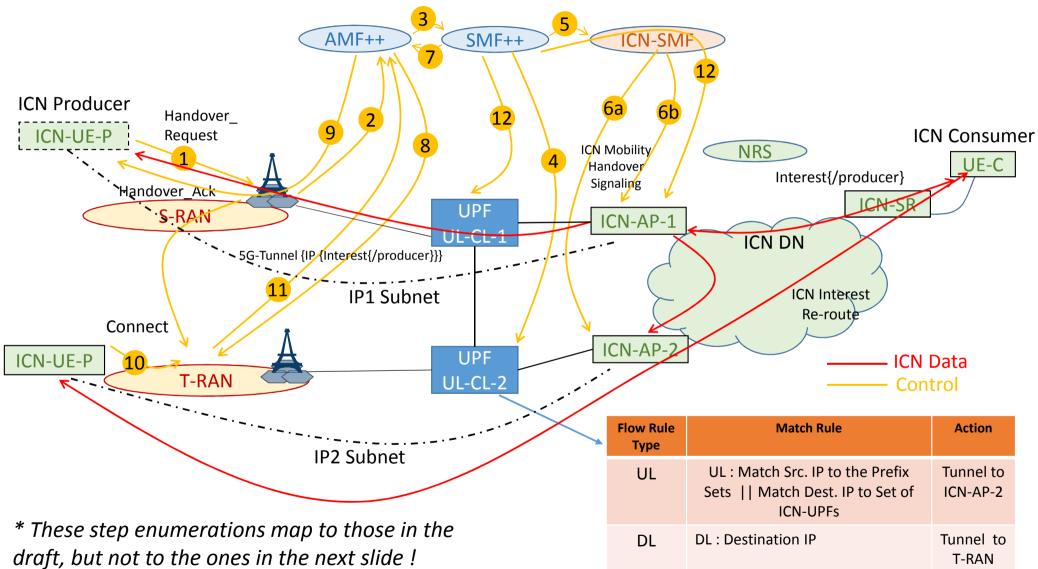
Features	IP/MEC	ICN
Networking Paradigm	 Host-to-Host Communication based on Addresses Application use Address as Names too Session Based (TCP/UDP/QUIC) Session disruption during mobility or service migration 	 Persistent Name Based (Content, Services, Devices) Session-less (Interest/Data semantics) Applications oblivious of resource dynamics (mobility, replication etc.)
Adhoc	Not Capable	CapableSuitable for V2V and V2I scenarios
Configuration Requirement	 IP Address Management (Vehicles & MEC Services) UE still requires an anchor point. Local Mapping system names to IP mapping (DNS) 	 Names can be well known or assigned Zero Configuration Possible within trusted environments Depends on Security/Trust requirements
Name Resolution	 Edge Service Discovery Local/Global DNS TTL Cache issue using DNS Latency (multiple RTT) Virtualization Challenges (Virtual IP to Phyiscal IP mapping) 	 Names pre-known to applications Name Based Routing (Shortest path, no additional RTT) Unified App/Network Naming (no mapping cost) Scalability Challenges (but closer to the edge, very less FIB state) ICN virtualization is only a optional deployment mode, can be native over L2 (5GNR, LTE, etc)
Computing/Caching/Storage	 Possible in the eNodeB Explicit in-packet signaling or traffic classification for service level indirections Service level data replication 	 In-Network Computing/Caching/Storage anywhere eNodeB, RSUs etc Explicit service semantics through naming
Mobility	 Challenging with services are at eNodeB Proximity Anchor based Mobility in L2, has to be moved from SGW to eNodeB. Still maintains signaling (control+data) to maintain tunnels. Ensuring seamless session mobility avoiding path stretches is a challenge Challenges for Low Latency applications 	 Application binds to names, ICN resolves names to locations In-Network Mobility support for both Consumers and Producers
Security	 On the channel, IP as identifiers and SSL/TLS/DTLS based mechanisms 	 Name-based and in-network security/trust verifiability Applications obtain data with explicit name/key binding

ICN Session Mobility

• ICN in 5GC can enable a flat architecture with in-build mobility

- More research is required for Policy, Charging, LI functions
- Mobility is handled at the ICN-AP

Mobility also affects the 5GC state when UL-CL and RAN is involved.


• With Co-location, this part of the signaling is localized

• The situation we assume is an extreme case

- Source to Target RAN Transitions (S-RAN to T-RAN)
- SMF targets a new UL-CL and ICN-AP
- Signaling is simplified if UL-CL/ICN-AP transition is not assumed.
- ICN producer mobility technique is orthogonal here, but we assume use of forwarding-labels [1]

[1] Ravi Ravindran et al, "Forwarding-label Support in CCN Protocol", IETF/ICNRG, 2017, https://tools.ietf.org/html/draft-ravi-icnrg-ccn-forwarding-label-01

Handling ICN Session Mobility

High Level Steps

Initiating Handover

- UE signaling S-RAN with a handover request and the T-RAN it is willing to handover to.
- S-RAN signals the AMF serving the ICN-UE with T-RAN along with affected ICN PDU sessions.
- AMF signals SMF about the mobility for the affected PDU sessions. SMF chooses a new UL-CL and ICN-AP-2 for the new ICN PDU session configuration.

Handle 5GC State

- SMF signals UL-CL-2 and ICN-AP-2 to provision the new ICN PDU session state both for UL and DL, and then signals ICN-SMF.
- ICN-SMF notifies ICN-AP-1 about the handover for the PDU sessions along with the new ICN-AP-2, and the PDU session tunnel provisioned for this PDU sessions.

Make-before-break in ICN-DN

- ICN-AP-1 uses ICN-AP-2's locator-ID to begin forwarding the incoming packets to ICN-AP-2.
- Further ICN-SMF also provisions the forwarding state in the ICN-AP-2 to map the ICN flows to the PDU session tunnel(s).

High Level Steps

Update RAN state and Radio Resource Assignment

- ICN-SMF then acknowledges SMF, which inturn acknowledges AMF with the UL-CL-2 tunnel information.
- AMF then provisions the T-RAN with the PDU session state to forward packets to the UL-CL-2 in the UL and DL.
- AMF then initiates radio resource configuration in T-RAN to serve ICN-UE.

UE Hand-Over to new RAN

• The AMF then acknowledges the ICN-UE to handover to the T-RAN, henceforth the packets can be send and received from UL-CL-2 relaying through ICN-AP-2.

Freeing Previous State

• After successful handover i.e. attachment with T-RAN, AMF/SMF removes the session and resource state from S-RAN/UL-CL-1/ICN-AP-1

Evolving the draft

- More contributors are welcome considering the scope of 5G applications and how ICN can uniquely address them.
- Design choices leveraging 5G architectural flexibility to support ICN
 - How Unstructured PDU support can be used towards ICN
 - Cross layer integration between ICN and 5G-NR can allow more efficiency, e.g. handling dynamic multicast.
- There is a good chance to use it to influence ICN adoption in Rel 16
- More comments...?

Thanks !!