
Support for Notifications in CCN

(“draft-ravi-icnrg-ccn-notification-01.txt”)

IETF/ICN-RG -100, Singapore

Ravi Ravindran (ravi.ravindran@huawei.com)

Asit Chakraborti(asit.chakraborti@huawei.com)

Syed Obaid Amin (obaid.amin@huawei.com)

Jiachen Chen (jiachen@winlab.rutgers.com)

Marc Mosko(marc.mosko@parc.com)

Ignacio Solis(ignacio.solis@parc.com)

https://tools.ietf.org/html/draft-ravi-icnrg-ccn-notification-01

Draft History

• First presented in IETF 95

• IETF96 we added more discussion around flow and
congestion control
– Also a related ICN Sigcomm paper last year

• Jiachen Chen et al, “SAID: A Control Protocol for Scalable and
Adaptive Information Dissemination in ICN”

• Motivated by how simple AIMD and flow balance doesn’t
prevent congestion with heterogeneous receivers.

– They show, eventually slower ones fall behind and stop benefitting
from the network cache.

• Feedback from chairs to include more discussions
on why current Interest/Data Abstraction fails

• This revision attempts to do that.

Table of Content

Motivation for PUSH in CCN

[1] Shafiq et al, “Large scale measure and characterization of cellular machine-to-machine traffic”, IEEE,

Transactions on Networking, 2013
[2] ITU, FG, IMT 2020 – “Network Standardization Requirement for 5G”

http://www.itu.int/en/ITU-T/focusgroups/imt-2020/Documents/T13-SG13-151130-TD-PLEN-0208!!MSW-E.docx

Fig. 1: Log Ratio of Upstream to Downstream traffic for M2M

and Smart Phone

• PUSH is a norm in IoT system, many messaging systems e.g. MQTT

•From Fig 1., significant (>80%) number of M2M devices have traffic that is upstream heavy.

• From Fig. 2, the distribution between the transmission vary from mins to days.

• Some of these updates are mission critical [2], with latency and reliability requirements for URLLC class of applications in 5G 1-10ms,

and no message loss.

• This is just one data point, pub/sub is standard in the industry e.g. Social Networks

• Other ICN protocols such as MobilityFirst, NetInf support both PUSH and PULL.

Fig. 2: Distribution between transmission range

from hours to days.

CCN PUSH Requirements

• Supporting PUSH Intent
– This should match application’s intent to PUSH content similar to the

PULL primitive.

– Feature to be supported considering efficiency and scalability

• Support Multicast
– Support network service where an application PUSH can be

multicasted to all intended receivers (just like Interest Multicast)

• Security
– Should be able to deliver secure (authenticated and encrypted) NDO

• Routing and Forwarding Support
– Push prefixes (Multicast or Unicast) should be treated differently

from prefixes for regular Interests from routing and forwarding
perspective, to support the PUSH intent.

• Minimizing Processing
– PUSH flows shouldn’t be subjected to PIT/CS processing, considering

latency and application intention.

Using Interest/Data Abstraction for

Push

• Discusses how Interest/Data Abstractions can be
used to achieve PUSH.

• Four Basic Approaches
– Long Lived Interests

– Polling

– Overloading Interests

– Interest Trigger

• We offer design choice discussions for each of these
cases with its pros and cons.

• The discussion assume multiple providers within the
same GROUP_PREFIX generating content randomly
and receivers seeking to sync with the producers.

Using Interest/Data Abstraction– Long Lived Interest v1
• Assume consumers know all the names [No

message loss]

– Content name: /GroupID/ContentID

• ContentID: sequential across all providers

– Query: /GroupID/ContentID (full name)

• Problem with solution:

– Inefficiency in multi-provider case

• All Interests have to be send to all providers

• Redundant Interest delivery

• Some PITs will never be consumed (e.g., pkt1 from

P2 to R1)

• Problem with assumption:

– How can the providers synchronize?

E.g., 2 providers send at the same time, who

uses which name?

– Even if the providers can synchronize, what’s

the cost?

– Providers have to address another sync

problem

P1

P2

S1 S2

S3

R1

R2

PIT of /GroupID

Using Interest/Data Abstraction– Polling v1

• This is to prevent the issues with the previous approach, the
providers can publish content using timestamps.

• Assume the consumer only know the group name
– Content name: /GroupID/<Timestamp>

• No need for synchronization across providers

– Query name: /GroupID/<earliest after XXX>
• XXX: the latest version (timestamp) I have

• Problem with solution:
– Need to have a synchronized time over the service providers and

consumers

– Ambiguous content when two providers publish using the same
timestamps or when the clocks drift apart

– Message loss:
• P1 has notification t=1234, P2 has notification t=1327

• Consumer query with <earliest after t=1200>
(he can’t query 1201, since he is not sure if there is such a content)

• P2’s version might arrive before P1’s version

• Consumer will query <earliest after t=1327> and miss P1’s content

Using Interest/Data Abstraction– Long Lived Interest v2

• Assume consumers know all the names

– Content name: /GroupID/ProviderID/ContentID

• ContentID: sequential per provider

– Query: /GroupID/ProviderID/ContentID (full name)

• Problem with assumption:

– Consumers have to know all the potential providers

– The solution becomes more “host-centric” than “information-

centric”

• Avoids the packet losses from the previous case

• Problem with solution:

– Increases the PIT state in the network

– If the Group_ID is shared among multiple devices (laptop, smart

phone etc.), the issues are similar to the long lived interest- v1

case.

Using Interest/Data Abstraction– Polling v2

• To reduce the PIT states in the network, we could process
Interests in the Application Layer
– Useful in applications like Gaming

• Assume consumer knows all the providers
– Content name: /GroupID/ProviderID/ContentName/<timestamp>

• ContentID: sequential per provider

– Query: /GroupID/ProviderID/<updates after t>/nonce

– Response: all the contents during the period (in a single response),
or “no update” response

– Aggregates the responses & the providers do not have to follow the
sequential version

• Problem with solution:
– Inefficiency with polling

– More load on the providers

– Caching not useful here

– Consumers have to know all the potential providers

Using Interest/Data Abstraction–

Polling with a Server

Using Server for Aggregating Provider Notifications:

• Offloads Provider level data aggregation to a server

• The providers would publish data into the server and the
consumers would poll for the updates from the server (similar
to Twitter and Facebook in IP network).

• Server will offer aggregated response.

Problems with the Solution:

• Single point of failure, just as in case of IP services today

• Server has to use one of the previous mechanisms to sync their
current content state with providers.

• Caches are not useful here just in the previous case

• This approach boils down to a host-centric approach by tying
down to a server

Using Interest/Data Abstraction– Interest

Overloading

Approach

• Notification Payload can be inserted into the Interest
itself

– Interests takes the form /GROUP_ID/NONCE/<Payload>

Problems with this Solution

• Routing and forwarding has to differentiate between
Regular Interests from Interests with Notifications

• Storing PIT state has to be avoided for efficiency

• Consumer oriented FIB entry should reach all the
providers

• Payloads beyond a certain size has to be avoided
considering engineering assumptions on Interest sizes.

Using Interest/Data Abstraction– Interest

Trigger

• Solutions

– Takes care of avoiding inserting Payload into the

Interest and routing and forwarding complexities of the

previous scheme

– Send a trigger with the content name, and the content

will then be pulled

• Problems

– Atleast a RTT delay, affects mission critical applications

– Triggers still have to reach all the receiving points, so

still has the routing and forwarding challenges.

– Trigger name space should be defined carefully.

Other updates

• The remaining part of the draft hasn’t been

changed.

• We provide discussions on protocol semantics,

router operation

• Flow congestion control discussions are also

provided

• Use case on using this for pub/sub is also

provided.

Next Steps

• Comments from the chairs and the group to

further this draft are welcome.

