Carry Congestion Status in BGP Community

draft-li-idr-congestion-status-community-06

Zhenqiang Li
China Mobile

Jie Dong
Huawei Technologies
Scenario to be addressed

• In some circumstances, we need to know the link congestion status, both the link bandwidth and its utilization

• Egress Peer Engineering using BGP-LU [I-D.gredler-idr-bgplu-epe] needs this kind of information to aid MPLS routers to do traffic-engineering on inter-AS links

• Constrained Multiple BGP Paths [I-D.boucadair-idr-constrained-multiple-path] wanted to use the link congestion information as a metric to select the appropriate path among multiple BGP paths. The purpose was to do proactive reaction to the congestion events.

• To aid a router to perform unequal cost load balancing, Cisco introduced Link Bandwidth Extended Community in [link-bandwidth-community] to carry the cost to reach the external BGP neighbor. The cost can be either configured per neighbor or derived from the bandwidth of the exit link
Scenario to be addressed

- General Benefits of knowing the link congestion status

 - For the BGP speakers within one AS.
 - If the exit routers, Router 7 and 8, tell their iBGP peers in AS A the congestion status of the exit links, the peers in turn can steer some outgoing traffic toward the less loaded exit link.

 - For the BGP speakers across multiple ASes.
 - Due to cost or network performance, AS A prefers AS B to access AS C.
 - If AS A knows the link between router 2 and 3 is congested, it can steer some traffic towards AS C from AS B to the directly connected link between router 1 and 6.

 - The province network of China Mobile wants to do AS outgoing load balance by using the congestion status information of the exit links.
Solution Alternatives

- Option 1: Extended Community

- Option 2: Large Community
Solution Alternatives

• **Option 3: Community Container**

 - **Type:** A new type is to be defined for the congestion status community
 - **Sender AS Number:** in 4 octets, the AS number of the BGP speaker who generates this community
 - **Bandwidth:** in 4 octets, with unit of mbps
Deployment Considerations

• To avoid route oscillation
 • the exit router SHOULD set a threshold. The exit router generates BGP update messages with congestion status community only when the link utilization change reaches the threshold.
 • The method similar to BGP Route Flap Damping is RECOMMENDED for the implementations to further reduce the BGP update messages triggered by link utilization change.
 • To reduce the update churn introduced, when one BGP router needs to re-advertise a BGP path due to attribute changes, it SHOULD update its Congestion Status Community at the same time.
Deployment Considerations

• To avoid traffic oscillation
 • Route policy can be set at the exit router. Congestion status community is only conveyed for some specific routes or only for some specific BGP peers.
 • If the congestion status community is used by a SDN controller, the controller can steer the Internet access traffic among all the exit links from the perspective of the whole network.

• To avoid forwarding loops
 • the reception of such community over IBGP session SHOULD NOT influence routing decision unless tunneling is used to reach the BGP Next-Hop.
Security Considerations

• The BGP receiver has the right to trust the congestion status communities or not.
 • The BGP receiver may choose to only trust the congestion status communities generated by some specific ASes or containing bandwidth greater than a specific value.
 • You can filter the congestion status communities at the border of your trust/administrative domain. Hence all the ones you receive are trusted.
 • You can record the communities received over time, monitor the congestion e.g. via probing, detect inconsistency and choose to not trust anymore the ASes which advertise fake news.
IANA Requirements

• Solution 1: Extended Community

```
<table>
<thead>
<tr>
<th>0x02</th>
<th>Sub-Type New value</th>
<th>Sender AS Number</th>
</tr>
</thead>
</table>
```

• Solution 3: Community Container

```
| Type New value | Flags |C|T| Reserved |
|----------------|-------|---|-----|
```

```
<table>
<thead>
<tr>
<th>Sender AS Number</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Sender AS Number (cont.)</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Bandwidth</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Bandwidth (cont.)</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Utilization</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Reserved</th>
</tr>
</thead>
</table>
```

```
Next steps

• Accepted by the working group?
Thanks