IntArea WG Agenda IETF 100 - Singapore

Architectural Considerations for Delivering Latency Critical Communication over the Internet

https://tools.ietf.org/html/draft-xia-latency-critical-communication-00

d.king@lancaster.ac.uk xiajinwei@huawei.com zongning@huawei.com

Low Latency Critical Communication Challenges

Avalanche of Traffic Volume

Further expansion of mobile broadband

Additional traffic due to communicating machines

"1000x in ten years"

Massive growth in Connected **Devices** "Communicating machines" "50 billion devices in 2020"

Large diversity of Use cases & Requirements

> Device-to-Device Communications Car-to-Car Comm.

New requirements and characteristics due to communicating machines

Low Latency Critical Communication Motivation

- Low latency applications are still likely to be end-to-end and traverse multiple network domains and involve multiple network layers.
- Current standard work focus on particular protocol, link, layer, etc., rather than the latency from user's perspective.
 - **Disclaimer**: Multiple network domains doesn't necessarily mean cross-ISP deployment
 - **Disclaimer**: Not to introduce the tension between application and network layers
- It would be beneficial to define end-to-end low latency delivery architecture to coordinate and orchestrate multiple low latency tools, in order to facilitate end-toend low latency characteristics.
 - **Disclaimer**: Not to reinvent new low latency tool, but reuse / orchestrate existing tools
- It would be useful to analyze the gap and challenges to existing low latency tools
 - Including new emerging low latency requirements
 - Ultra high-reliability and Low-latency Communication (URLLC) and Broadband Assured IP Service (BAS)

European Research and Industry Investigation

https://5g-ppp.eu/5g-ppp-phase-1-projects/

٠

Low Latency Critical Communication Requirements

Low Latency Critical Communication Categories

- Various 5G projects agree on the following 5G Use Case categories:
 - Extreme Mobile Broadband (xMBB): high speed and low latency mobile broadband
 - Ultra-reliable Machine-type Communication (uMTC): reliability is the key service requirement of these services
 - Massive Machine-Type Communication (mMTC) and Massive IoT (mIoT) massive M2M and IoT connectivity
 - <u>Critical Connections/ Ultra Reliable Low Latency Connections (CriC/URLLC)</u>: low latency and ultra-reliable communications
- For each category of use case, specific KPIs are identified for clustering requirements:

Device density:

- High: ≥ 10000 devices per km2
- Medium: 1000 10000 devices per km2
- Low: < 1000 devices per km2

Mobility:

- No: static users
- Low: pedestrians (0-3 km/h)
- Medium: slow moving vehicles (3 50 km/h)
- High: fast moving vehicles, e.g. cars and trains (> 50 km/h)

Infrastructure:

- Limited: no infrastructure available or only macro cell coverage
- Medium density: Small number of small cells
- Highly available infrastructure: Big number of small cells available

Traffic type:

• Continuous

- Bursty
- Event driven
- Periodic
- All types

User data rate:

- Very high data rate: ≥ 1 Gbps
- High: 100 Mbps 1 Gbps
- Medium: 50 100 Mbps
- Low: < 50 Mbps

Latency

- High: > 50 ms
- Medium: 10 50 ms
- Low: 1 10 ms

Reliability

- Low: < 95%
- Medium: 95 99%
- High: > 99%

Availability (related to coverage)

- Low: < 95%
- Medium: 95 99%
- High: > 99%

Cross-SDO Investigation has started

- Critical low latency communications are clearly needed, various activity across SDOs
 - Work has started to review requirements, use cases and consider applicability of existing technologies:
- IETF
 - draft-dunbar-e2e-latency-arch-view-and-gaps-01 (high level view and gap analysis)
 - draft-arkko-arch-low-latency-02 (high level and architecture view)
 - Detnet / L4S / ACTN / etc. (low latency tools in various network domains and/or layers)
- 3GPP / 5GPPP / NGMN
 - 3GPP TS 38913 (Requirements for Next Generation Access Technologies)
 - 5GPPP Requirements on URLLC services, such as self-driving cars, industrial control and real-time gaming
 - NGMN 5G white paper
- IEEE 802.1 TSN Task Group
 - Time sensitive networking
- BBF BAS
 - WT 387/388 (Broadband Assured IP Services Architecture)

However, Too many use cases...

Use Case Name	Type of Vertical or Mass Market	Application Scenario	Requirement Category
Cloud Robotics - Service robots dealing commercial tasks	Cloud Services (including Service		
(professional service robot) or services for the person,	Robotics)		CriC/URLLC (and xMBB)
usually at home (personal service robot).	Roboticsy	Everywhere	
Assisted driving	Automotive	Road network	CriC/URLLC
Autonoumous/Cooperative driving	Automotive	Road network	CriC/URLLC
Tele-operated driving	Automotive	Road network	CriC/URLLC
Info mediation - Road safety and traffic effiency	Automotive	Road network	CriC/URLLC
On board Infotainment	Automotive	Road network	CriC/URLLC (and xMBB)
Nomadic nodes (vehicle that becomes a small cell itself)	Automotive	Road network	CriC/URLLC (and xMBB)
BB Communication services on High Speed train	Transports and logistics	Railway network	CriC/URLLC
BB Communication services on Flying plane	Transports and logistics	Sky fligth paths	CriC/URLLC
Drone/ robot delivery service	Transports and logistics	Smart City	CriC/URLLC
Mobile video surveillance for public security	Public safety & Environment	Smart City	CriC/URLLC
Connected Drones for public security or environment			
monitoring - by means of missions in UMT (Unmanned Aerial	Public safety & Environment		CriC/URLLC
System Traffic Management)		Smart City	
Emergency management - Natural disaster and Emergencies	Public cafaty & Environment		
(terrorism, fire, explosions, etc.)	Fublic safety & Environment	Everywere	CHC/ORLEC
Tactile Internet - remote actuator (haptic device			
maneuvered by a human) and a slave robot for operating in a	Public safety & Environment		CriC/URLLC
dangerous context.		Smart City	
Process automation - analogue industrial processes such as			
one handling fluids or gas - (chemical and petrochemical	Industry 4.0		CriC/URLLC (and mIoT)
industries)		Industrial Plant	
Smart Factory - Automated and programmable product line -	Industry 4.0		CriC/UBLLC (and mIoT)
Robotics	industry no	Industrial Plant	che one cana mory
Remote Human Assistance	Industry 4.0	Industrial Plant	CriC/URLLC
Assisted Surgery	Health and Wellness	Hospital	CriC/URLLC
Remoted Surgery	Health and Wellness	Hospital	CriC/URLLC
Info-mediation (f. i. patient check-in and check-out	Health and Wellness		CriC/UBLLC (and mIoT)
automated with the aid of sensors)		Hospital	che/oneec (and mory
Automated Farm machinery (autonomous drive of tractors	Agriculture		
etc.)	Agriculture	Agricultural land	ency onlee
Fast/real time cooperative media production in a crowd	Media and Entertainment		CriC/UBLLC (and xMBB)
location		Crowd location	
Cooperative Games (incl. VR/AR)	Media and Entertainment	Everywere	CriC/URLLC (and xMBB)
New media experience (i. e. using 4K/8K displays, immersive			
6DoF displays, HMDs, voice/ video recognition, VR, AR and	Media and Entertainment		CriC/URLLC (and xMBB)
tactile/ 4D))		Indoor hotspots	

We need to focus discussion on a few (2-3?) Use Cases

- In our discussion document
 - <u>draft-xia-latency-critical-communication-00</u>
- Document highlights three use cases
 - Cloud-based Virtual Reality (6-Degrees)
 - Live-TV Distribution in Virtualized CDN environments
 - Remote Surgery
- Document investigates
 - Measurement of Latency
 - Mechanisms to achieve low latency flows
 - Alternatives to existing low latency networking
 - Privacy and security considerations
- Document provides strawman architecture
 - See next slide

Critical Low Latency Delivery Architecture

- Orchestration architecture
 - Receive application requirements (e.g. URLLC requirements, BAS QoE)
 - Translate into various network service configurations (e.g. L2SM, Detnet Service Model, FlexE control model, etc.)
- Provides description of key functional components and interactions

Is this a worthy discussion?

- Q1. Does ongoing investigation and discussion of critical low latency communication add value?
 - Do we already have low latency tools and architecture in IETF?
 - It is difficult for cross-ISP deployment to carry QoS, and cross-layer communication?
- Q2. Is it useful for IETF to start gap and challenge analysis to existing low latency tools, especially network service configuration models?
 - In order to support URLLC and BAS requirements?
- Q3. Should we develop an IAB workshop on this topic?
- Q4. Would cross-SDO communication be beneficial?
 - 3GPP, BBF, ETSI, all have requirements, use cases and ideas, but...

Thank You!

d.king@lancaster.ac.uk xiajinwei@huawei.com zongning@huawei.com