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• AS56357: Chair of Network Architectures and Services 
− Prof. Dr.-Ing. Georg Carle 
− 5 Post-docs 
− 15 PhD students/research associates 

• Broad range of network research topics 
− Traffic measurement and analysis 
− Software-defined networking 
− Security 
− Privacy 
− Peer-to-peer networks 
− IoT 
− Performance analysis and modeling 

Research at net.in.tum
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• Packet processing becomes more complex 
− Software-defined networking, network function virtualization, … 

• More and more can be done in software nowadays 
− Frameworks like DPDK 
− Complex virtualized network functions, e.g., in 5G 
− Performance impacts unclear 

• Research questions 
− What are important performance metrics? 
− How to measure them in a realistic scenario? 
− How to make measurements reproducible? 
− How can performance be predicted with models? 

Performance analysis and modeling
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Our testbed
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20      

SDN-based Testbed 

Fully automated workflow for 
reproducible network experiments 
•  Input: Test Configuration File 
•  Allocate Resources 
•  Boot Test Machines 
•  Deploy System Image via Network 
•  Configure Network Topology 
•  Deploy Host Scripts 
•  Supervise Test Sequence 
•  Collect Results 
•  Output: Measurement Results 
Multi-User capable 
Reproducible experiments 
 

• 15 servers, 36 x 10 Gbit/s ports, 8 x 40 Gbit/s ports 
− NICs from Intel, Mellanox, and Netronome 
− SDN switches/routers 

• Fully automated test workflow from a management server 
− Allocate servers exclusively 
− Define and run experiment test scripts 
− Get results in a Jupyter notebook 

• Servers boot pre-built live images via PXE 
− Ensures reproducibility 
− Collection of different kernel versions/distributions



• PhD student at Technical University of Munich 
• Started in 2014 
• PhD thesis about testing network devices 
• Built the MoonGen packet generator for this 
− Used quite often in academia nowadays :) 

About me
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Packet generators
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Commodity hardware



Combines the advantages of software (cheap, flexible) 
and hardware (precise, accurate) packet generators.  

−Fast: DPDK for packet I/O, explicit multi-core support 
−Flexible: Craft all packets in user-controlled Lua scripts 
−Timestamping: Hardware features found on NICs  
−Rate control: Hardware features and novel software approach 
−Free and open source: Code available on GitHub 

https://github.com/emmericp/MoonGen 

Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg Carle. 
MoonGen: A Scriptable High-Speed Packet Generator. Internet Measurement Conference (IMC) 2015, October 2015. 

MoonGen
Packet Generator & Latency Measurement

Technische Universität München

Chair for Network Architectures and Services

Sebastian Gallenmüller, Paul Emmerich, Daniel Raumer, Georg Carle
Contact: {gallenmu | emmericp | raumer | carle}@net.in.tum.de

Features & Architecture

MoonGen is a scriptable high-speed packet generator built on a Intel’s Data
Plane Development Kit (DPDK) as backend offering a wide range of features:

I Speed: �10Gbit/s with minimal sized packets using a single CPU core

I Flexibility: Configuration & packet crafting in user-controlled Lua scripts

I Efficiency: Code optimization to generate fast scripts using LuaJIT

I Precision: Sub-µsec delay measurements on Intel 10Gbit NICs

I Parallelization: Multi-core support for rates beyond 10Gbit/s

MoonGen Core
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MoonGen’s architecture

Latency Measurement Feature

I MoonGen reuses hardware features originally de-
signed for the Precision Time Protocol (PTP)

I Timestamping happens in hardware shortly be-
fore/after sending/receiving

I Precision of ± 3.2 ns on Intel X540 10Gbit NICs

I Limitations: Packets must look like PTP packets:
only UDP and PTP layer 2 packets are supported

Latency Measurement Example
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Latency distribution of traffic forwarded through a VM
running on top of Open vSwitch at a load of 322k
packets/s.

Latency Measurement Demo

I Cable length determination through time-of-flight

I Demo setup uses an unaltered Intel X540 dual port
NIC
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More Information

Additional information and source code of MoonGen is
available at:

https://github.com/emmericp/MoonGen

USENIX Symposium on Networked Systems Design and Implementation, May 4 - 6, 2015, Oakland, CA, USA

MoonGen - A fast software packet generator
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Traffic patterns matter: CBR is hard!
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• Bursts are important for performance 
• Typical default burst sizes: 16 to 256 
• Packet generators often fail to generate CBR reliably

• Forwarding latency of Open vSwitch (kernel), increasing load 
• Baseline latency: CBR traffic, varying burst sizes



CBR can lead to weird effects
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• Forwarding latency of Open vSwitch (kernel), increasing load 
• Dynamic interrupt throttling (ixgbe driver) and poll-mode (NAPI) 

don’t play well with CBR traffic
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Real-world traffic isn’t CBR

11

• Only change: time between packets 
• Real-world traffic is a self-similar pattern 
• Can be approximated with a Poisson process on short time scales



Latency measurements
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RT latency distributions, QoS enabled, 8Gbit/s BG
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Figure 3. Latency distribution of 1 Gbit/s RT traffic with 8 Gbit/s BG
traffic, QoS enabled

The total forwarding latency l consists of the delay
introduced by the connection from the packet generator to
the switch lgen, the forwarding latency lswitch of the switch,
and the number of hops n:

l = 2 · lgen + n · lswitch

We measured the forwarding latency through the switch with
various loop lengths from n = 0 (sending the traffic back
directly) to n = 23. Figure 6 shows the CDFs of different
loop lengths up to n = 15 to improve the readability of
the graph as the remaining CDFs look similar. We can
calculate the following median latencies from these results:
lgen = 480ns and lswitch = 729ns. These values include
propagation delay due to varying cable lengths, we used
copper cables with various lengths between 0.5 and 3 meter.
This introduces an additional error of 12 ns (assuming a
propagation speed of 0.7c [?]) in addition to the granularity
of 12.8 ns of the packet generator [?].

Note that these results are crucial for FLOWer: The
latency of the switch is important for further tests using
the switch to amplify traffic for a separate DuT. In such
a setup, the switch is part of the measurement equipment,
and its accuracy therefore limits the total accuracy of the
experiment.

These results show that forwarding latency does not
depend on the switch ports. This indicates the high accuracy
of the packet generator and that latency is independent from
the used switch port. We did not test all combinations of
ports, one should repeat this test with the appropriate set of
ports to verify this before relying on a switch to run latency-
critical experiments. There may be differences in the latency
between ports on a switch due to the internal architecture
of the switch.

The difference between the minimum and maximum
observed forwarding latency was only 217.6 ns (cf. the
steep CDFs in Figure 6, each based on 48 000 timestamped

1 1.5 2 2.5 3 3.5

0

20

40

60

80

100

1Gbit/s BG tra�c

2Gbit/s BG tra�c

4Gbit/s BG tra�c

8Gbit/s BG tra�c

16 - 414Gbit/s BG tra�c

Latency [µs]

C
u
m
u
l
a
t
i
v
e
p
r
o
b
.
[
%
]

Figure 4. Latency distributions of 1 Gbit/s RT traffic with varying BG
traffic, QoS enabled
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Figure 5. Loop forwarding test setup
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Figure 6. Latency distributions traffic forwarded through the switch n times

packets over 48 seconds3). This is important when the switch
is used to amplify traffic while also measuring latency, the
inaccuracy of the switch affects the measurement. OpenFlow
switches with a far lower jitter exist [?] and can be used if
a better precision is required.

5. Amplifying Traffic

After evaluating the suitability of an OpenFlow Switch
for our testing purposes in Section 4 we apply the FLOWer

3. MoonGen cannot timestamp all packets, only random samples.



Latency measurements
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• Arbitrarily complex header stacks 
• Generates and JIT compiles C structs 
• Defaults for all header fields 
− E.g., calculates lengths, ports based on upper protocol 

• Getters and setters, automatic endianness handling 
• Following example code based on 

https://github.com/emmericp/moongen-scripts/blob/master/vxlan.lua 

 local vxlanStack = packetCreate( 
 "eth", "ip4", "udp", "vxlan", 
  {"eth_8021q", "innerEth"}, 
  {"ip4", "innerIp4"}, 
  {"udp", "innerUdp"} 
) 

Generating complex packets
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•Create a mempool with a packet archetype 

     local mempool = memory.createMemPool(function(buf) 
        local pkt = vxlanStack(buf) 
        pkt:fill{ 
            -- fields not explicitly set here are initialized to defaults 
            ethSrc = queue, -- MAC of the tx device 
            ethDst = arpTask.lookup("10.0.0.3"), 
            ip4Src = "10.0.0.2", 
            ip4Dst = "10.0.0.3", 
            vxlanVNI = 10100, 
            -- outer UDP ports are set automatically by the VXLAN handler 
            innerEthSrc  = "12:34:56:78:90:ab", 
            innerEthDst  = eth.BROADCAST, 
            innerEthVlan = 100, 
            innerIp4Src  = "192.168.0.1", 
            innerIp4Dst  = "255.255.255.255", 
            innerUdpSrc  = 1024, 
            innerUdpDst  = 1024, 
            pktLength    = 128 
        } 
        pkt.innerIp4:calculateChecksum() 
    end) 

Generating complex packets
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•Write a transmit loop 
   local bufs = mempool:bufArray() 
   while mg.running() do 
       bufs:alloc() 
       for i, buf in ipairs(bufs) do 
           local pkt = vxlanStack(buf) 
           pkt.innerUdp:setDstPort( 

      1000 + math.random(0, 1000) 
  ) 
  -- randomize other fields here 

       end 
       bufs:offloadUdpChecksums() 
       queue:send(bufs) 
    end 

Generating complex packets
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• Define one or multiple flows in a config file, e.g. 

   Flow{"syn-flood6", Packet.Tcp6{ 
                ethSrc = txQueue(), 
                ethDst = mac"12:34:56:78:90:00", 
                ip6Dst = ip"2a00:4700::2:225:90ff:fe74:7716", 
                ip6Src = range(ip"fe80::1", ip“fe80::ffff:ffff“), 
                tcpSrc = randomRange(0, 2^16 - 1), 
                tcpDst = 80, 
                tcpSyn = 1, 
                tcpSeqNumber = randomRange(0, 2^32 - 1), 
                tcpWindow = 10 
        } 

}

Don’t want to write a script? Use our CLI!
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• Send out previously defined flows 

   ./moongen-simple start syn-flood6:<dev>,<dev>:rate=40Gbit/s 

• Combine arbitrary flows 
• Different traffic patterns: CBR, Poisson, … 
• Time limits for automated tests 
• Per-flow packet counters 
• Quick debugging by printing instead of sending 
• See ./moongen-simple help for more 

• Caution: the CLI is still new and you might encounter bugs

Don’t want to write a script? Use our CLI!
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• OPNFV project: Test/benchmark framework VSPERF, 
MoonGen is one of multiple supported packet generators 

• PISCES, SIGCOMM’16: Software P4 switch, performance 
evaluation 

• NFVnice, SIGCOMM’17: NFV service chain scheduling, 
performance evaluation 

• Flurries, CoNEXT’16: NFV framework, performance 
evaluation 

• DNS DDoS Resilience Tests, RIPE 74: DNS traffic generation

How are others using MoonGen?
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How are others using MoonGen?
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Project and authors Publication 
venue

Doing what

PISCES 
Shahbaz et al.

SIGCOMM’16 Software P4 switch, performance 
evaluated with MoonGen. Contributed 
timestamping code for Intel 40 Gbit/s NIC.

Neutral Net Neutrality 
Yiakoumis et al.

SIGCOMM’16 Privacy-preserving quality of service, 
MoonGen used for the evaluation. Custom 
protocol/payload for test traffic.

NFVnice 
Kulkarni et al.

SIGCOMM’17 NFV chaining and scheduling, performance 
evaluated with MoonGen.

DNS DDoS Resilience 
Rincón et al.

RIPE-74 Replicating large DDoS attacks against 
DNS servers. Contributed DNS protocol 
code for MoonGen.

OPNFV VSPERF 
Linux Foundation

- MoonGen is one of multiple supported 
packet generators to test and benchmark 
the OPNFV project. 
Complex MoonGen script as test harness.



MoonGen comes with a lot of examples 
See if one fits your use case 

Check out MoonGen on GitHub
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Questions?

Check out MoonGen on GitHub

https://github.com/emmericp/MoonGen

Paul Emmerich (TUM) | NetApp TUM Workshop | I8 - MoonGen 13
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Questions?


