Welcome to the World of Standards

World Class Standards

1

ETSI work on IoT connectivity: LTN, CSS, Mesh and Others

Josef BERNHARD – Fraunhofer IIS

Outline

ETSI produces a very large number of standards covering the entire domain of telecommunications and related services. Here we can only look a tiny portion of that work and we limit our view to some ETSI work for licence exempt spectrum below 1GHz

ETSI Deliverables

- Some sub-GHz approaches to IoT connectivity
 - LTN
 - LPWAN-CSS
 - Mesh networks
- Summary

ETSI Deliverables

- ETSI produces a wide range of standards and technical reports related to IoT connectivity, including:
 - System Reference Documents (SRdoc)
 - Technical Specifications (TS)
 - Harmonised Standards (EN)
- SRdocs support the European regulatory process by describing technologies, applications and markets as input to CEPT spectrum management processes
 - Some SRDoc examples from the work of ERM TG28 include:
 - TR 102 886: SRdoc Smart Metering
 - TR 103 245: SRdoc Wideband SRDs
 - TR 103 435: SRdoc UNB SRDs below 1 GHz
 - TR 103 526: SRdoc ERMTG28 LPWAN-CSS

ETSI Deliverables (2)

- Harmonized Standards provide the means for manufacturers to bring products to European Markets through presumption of conformity (when cited in the Official Journal of the EU)
 - Key examples for sub-GHz licence exempt spectrum from TG28 include:
 - EN 300 220: Short Range Devices (SRD); Radio equipment to be used in the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500 mW;
 - EN 303 204: Network Based Short Range Devices (SRD); Radio equipment to be used in the 870 MHz to 876 MHz frequency range with power levels ranging up to 500 mW
- Technical Specifications describe radio and protocol operation for specific products:
 - Examples include:
 - Several ETSI TS within 3GPP specifying LTE, NB-IOT, etc.
 - TS 102 887: Short Range Devices (SRD); Smart Metering Wireless Access Protocol
 - TSs on Architecture and protocols under development for LTN
 - Plus of course many, many more...

IoT Connectivity

- ETSI standards support many sub-GHz approaches to IoT connectivity including:
 - Cellular IoT Technologies like NB-IOT and LTE-M, which are covered by 3GPP standardization work

FRM TG28

- Low Throughput Networks (LTN) based on several radio technologies¹
- LPWAN-CSS (Chirp Spread Spectrum)¹
- Mesh networks
- Many others...

¹Star networks with long range (achieved by operating at low data rate) and low power consumption in the IOT device

Wide Area Coverage

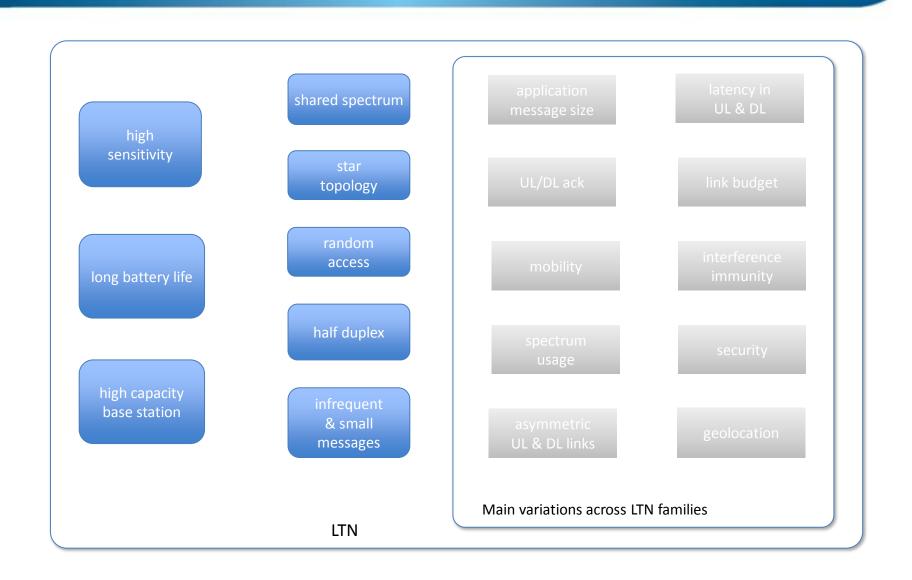
- Wide Area coverage can be obtained by trading link performance for range
 - CEPT regulations for non-specific SRDs (ERC/REC 70-03 Annex 1) and Data Collection SRDs (ERC/REC 70-03 Annex 2) allow up to 500mW Tx power in certain frequency ranges
 - EN 300 220 restricts Tx power in many SRD sub-bands to ≤25mW with a few ≤500mW. Duty Cycle limits also vary, from .1% to 2.5% to 10%, depending on the sub-band and other spectrum access conditions
 - EN 303 204 provides ≤500mW Tx power conditional on APC (≤ 5mW in strong link) and advanced short term Duty Cycle behaviour (≤ 400ms maximum emission duration). Duty cycle limits are ≤2.5% and under certain conditions ≤10% for NRP (access points)
 - Using the same Tx power limits:
 - LPWAN approaches using UNB or CSS extend range to multiple km at low data rates
 - E.g. 100-2500 Hz Channels with data rates up to 500bps, 125 kHz Channels with data rates from 250bps - 4.5kbps
 - Multihop communications extends range via re-transmissions retaining short range link performance
 - E.g. 200kHz Channels with data rates ~200kbps over 10s/100s metres

Structure of the LTN Standard

LTN Rapporteur Groups of ERM TG28 are preparing three documents:

ETS

- TR103249: LTN Use Cases and System Characteristics
- TS103358: LTN Architecture
- TS103357: Protocols for LTN interfaces A, B and C



LTN Use Cases

LTN characteristics derived from various Use Cases, e.g.:

- Smart metering / water and gas
 - Mainly battery operated, small data size, low update rate, indoor penetration
- Environment monitoring / smart agriculture
- Mainly battery operated, high coverage range, no latency restrictions
- Logistics
 - Small data size, harmonised license-free frequency bands
- Smart cities / street lighting
 - Controlled latency, bidirectional communication

LTN Characteristics

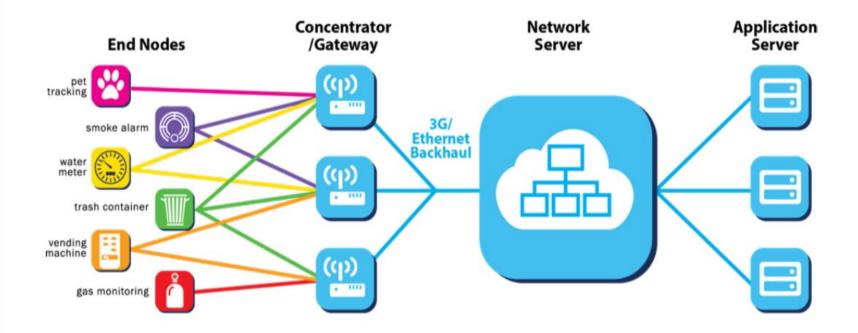
ETS

ŝ

LTN Families - Overview

LTN families:

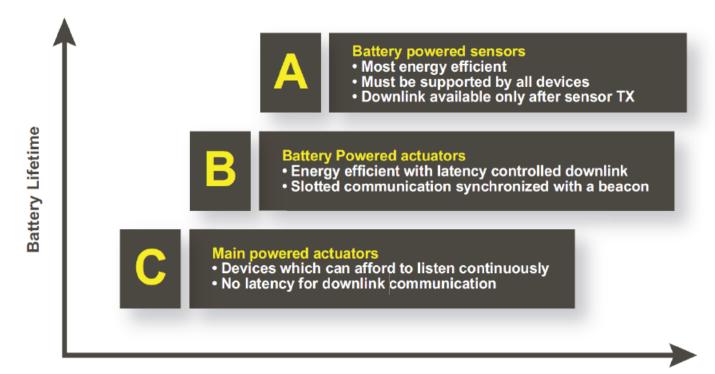
 Four different technical approaches for air interface to address different application needs


Parameter	3D-UNB	TS-UNB	DD-UNB	Lfour
Channel Access	Random Channel Access in frequency and time		Random Channel Access in frequency and slotted in time	
Transmission Timing	Endpoint Triggered		Beacon Time	GPS Time ¹
Specificity	Cooperative reception	Power optimized	Low downlink latency	High speed mobility

Note 1: One implementation example; other synchronization methods may be used

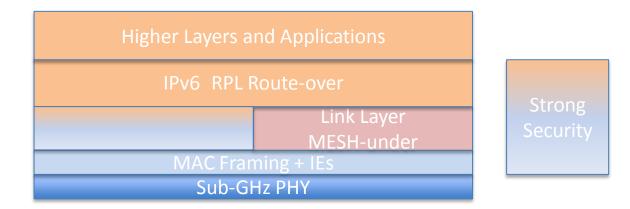
SRdoc LPWAN-CSS (1)

 Deals with a star of star network providing low-data rate connectivity for long range. The architecture is shown in the picture below.


ETS

SRdoc LPWAN-CSS (2)

Different classes of device to enable ultra low power consumption


E

Downlink Network Communication Latency

Sub-GHz Mesh Networks (1)

- Examples include Field Area Networks for Utility applications
- Major trend towards IPv6 standardization
- RPL Network Layer routing for harsh deployment environments
- MAC sub-layer MESH for high performance, latency-critical applications
- Synchronised or Pseudo-random channel hopping mitigating interference limited shared spectrum operation
- Large Scale Networks millions of nodes

Characteristics of Mesh Networks

- Substantial capacity increase via spatial re-use of limited spectrum
- Dynamic routing to overcome time-varying propagation impairments
- High diversity via many neighbour links for robust network connectivity
- Wide range of dynamic device operation
 - Adaptive Power Control (APC)
 - Adaptive data rates and modulation
 - Dynamic frequency use per transmission
- Addresses real network use case requirements with capacity for expansion and future growth
- Proven very large scale deployments in AMI applications
 - Growing installed base in Smart City applications & other IoT domains
- Support simple battery operated devices in mixed network deployments with minimum device complexity

Summary

- ETSI standards support a wide range of Use Cases for IoT communications in sub-GHz licence exempt frequency bands
- Network architectures supported include:
 - LTN for low power infrequent communications by predominantly battery operated devices
 - LPWAN-CSS for similar use cases to LTN
 - Mesh networks for high capacity and low latency applications

Visit the ETSI Web site for more information on the wide range of ETSI IoT related work (www.etsi.org)

thank you.

ETS

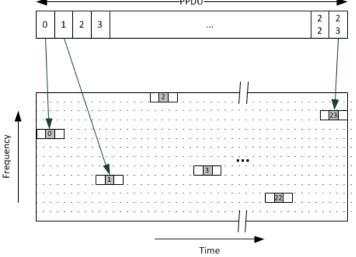
contact: josef.bernhard@iis.fraunhofer.de

Welcome to the World of Standards

World Class Standards

Further supporting slides for LTN families

3D-UNB


- Triple diversity ultra-narrow band
 - Diversity in time: aloha random access in uplink
 - Diversity in frequency: no channelization; Tx freq. randomly selected by device within operation band
 - Diversity in space: UL transmission received by all surrounding base stations
- Modulation: DBPSK 100 baud in UL ; GFSK 600 baud in DL
- Message size: 0-12 bytes in UL ; 8 bytes in DL
- DL: triggered by device
- Security: 128b auth. key & 128b encrypt. key
- Worldwide deployment

DD-UNB

- Ultra-Narrow Band system widely deployed for 'smart city' applications
- Bi-directional communications for sensing and control applications
- Flexible support of relays for hard-to-reach nodes
- Optional acknowledgement
- Unicast, multicast supported
- Adaptive coding and UL power control
- AES-256 encryption / authentication supported
- Slotted ALOHA in MAC procedure
- Worldwide deployment

TS-UNB

- Telegram Splitting Multiple Access (TSMA) based UNB:
 - Random channel access scheme with time-sliced radio transmission of PPDU
- GMSK modulation with 2380 baud and channel coding to shorten transmission time:
 - Low duty cycle (0,1%) band operation
 - Ultra low power (< 20µWh/message)
- Bi-directional communication
- Variable message size up to 245 bytes
- Security: AES128 encryption and authentication
- Pilot installations

LFour

- UL only protocol designed for multi-region operation e.g. Japan, Europe, USA
- Three PHY modes based on chirp spreading and π/2 shift BPSK modulation
- LDPC based error-correction and optional retransmissions
- Polite channel access by duty-cycle as well as listen before talk
- Precise GPS timing for synchronization
- Options of AES128 or ISO/IEC29192-2 CLEFIA based encryption