TCP Usage Guidance
in the Internet of Things
draft-ietf-lwig-tcp-constrained-node-networks-01

Carles Gomez
Universitat Politècnica de Catalunya
Jon Crowcroft
University of Cambridge
Michael Scharf
Nokia

IETF 100 – Singapore, November 2017
Status

• WG document after IETF 99 (Prague)

• draft-ietf-lwig-tcp-constrained-...-01
 – Last revision
 – Feedback from IETF 99
 – Comprehensive review by Hannes Tschofenig
 – Further on-list comments
 • Rahul Jadhav, Joe Touch, Abhijan Bhattacharyya...
Updates (I/III)

• Title
 – Old: TCP over Constrained-Node Networks
 – New: TCP Usage Guidance in the Internet of Things

• Abstract
 – Old
 • Profile
 – New
 • Guidance: techniques that simplify a TCP implementation
 • Related trade-offs
 • Help embedded developers with decisions
Updates (II/VIII)

• 1. Introduction
 – Optional TCP extensions increase codesize and RAM requirements
 • Many are not required for interoperability
 • Careful tuning can make the implementation lightweight
 – A TCP implementation following guidance in this document
 • Intended to be compatible with a TCP endpoint compliant with TCP standards
 – Possibly with lower performance in some aspects
Updates (III/VIII)

• 3. Characteristics of CNNs relevant for TCP
 – Structure:
 • 3.1. Network and link properties (former section 2)
 • 3.2. Usage scenarios (former section 3)
 • 3.3. Communication and traffic patterns
 – Traffic patterns
 • Unidirectional transfers
 • Request-response transfers
 • Bulk data transfers
 – Constrained-to-constrained possible
Updates (IV/VIII)

• 4.2. Maximum Segment Size (MSS)
 – Redundancy removed (editorial update)

• 4.3. Window size
 – Devices that support a larger TCP window size may benefit from Fast Retransmit and Fast Recovery
 • Window of 5 MSS needed (i.e. 6100 bytes for 1220-byte MSS)
 – Bulk data transfers may benefit from Limited Transmit
Updates (V/VIII)

• 4.4. RTO estimation
 – Trade-off more explicitly described
 • Aggressive vs conservative
 – There exists margin for RTO algorithm tuning
 • CoCoA cited as an example
Updates (VI/VIII)

• 4.8. Delayed Acknowledgments
 – Problem
 • Single-MSS window sender transmitting to a receiver that uses Delayed ACKs (e.g. outside the CNN)
 – Workaround: “Split hack”
 • Split the data into two segments of smaller size
 • Downside: overhead of two packets

• 5. Security considerations
 – BCP for securing TCP also applies in CNNs
 • E.g. TLS
 – Sec considerations of the mechanisms discussed apply
Updates (VII/VIII)

• 7.1. Annex: uIP
 – In case of a retransmission, the application must be able to reproduce the same user data
 – “Split hack”

• 7.5. Annex: TinyOS
 – The application is responsible for buffering
 • Send buffer available
 • Multiple-MSS window

• References
 – Better distinction: normative vs informative
Updates (VIII/VIII)

- Annex

<table>
<thead>
<tr>
<th></th>
<th>uIP</th>
<th>lwIP orig</th>
<th>lwIP 2.0</th>
<th>RIOT</th>
<th>OpenWSN</th>
<th>TinyOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data size</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Code size (kB)</td>
<td>< 5</td>
<td>~9 to ~14</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Window size (MSS)</td>
<td>1</td>
<td>Multiple</td>
<td>Multiple</td>
<td>1</td>
<td>1</td>
<td>Multiple</td>
</tr>
<tr>
<td>Slow start</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Fast rec/retx</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Keep-alive</td>
<td>No</td>
<td>*</td>
<td>*</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TFO</td>
<td>No</td>
<td>No</td>
<td>*</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ECN</td>
<td>No</td>
<td>No</td>
<td>*</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Window Scale</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TCP timestamps</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SACK</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Delayed ACKs</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Potential changes for -02

• Possible reorganization of Section 4 contents
 – Change the order of some subsections
 • E.g. “Delayed ACKs” subsection, more relevant than the “ECN” one
 – Other approaches
 • Single-MSS vs multiple-MSS window size
Thanks!

Carles Gomez
Universitat Politècnica de Catalunya
Jon Crowcroft
University of Cambridge
Michael Scharf
Nokia

IETF 100 – Singapore, November 2017