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Network Measurement

• Fundamental to network operations, research, protocol 
design, and informing Internet policy development.


• Minimal support from stack today (ping is what you get)


• Unintended features (e.g. traceroute)


• Brittle hacks (e.g. passive TCP loss/RTT)


• Inference (cf. any academic measurement paper)



Result:  
Important questions are hard

• What’s the best path to route traffic?


• What is the capacity or utilization of a link?


• How do networks interconnect?


• What AS operates a given router?



Even simple inferences  
are difficult!

• What's the delay between two hosts?


• (Per-protocol traffic differentiation, path vs. host delay, 
asymmetry)


• What are the endpoints in a communication?


• (NATs, CGNs, aliases, IPv6)


• How did packets arrive at a remote destination? 


• (order? modified? mangled? path? queued?)



What if we re-think the Internet protocol stack  
with measurability as a first-class component?



Approach

• Imagine packets carry measurement information: what 
should they include?


• Goal: maximum benefit for minimum overhead
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Candidate Primitives 
(see the paper)

• End to End Information §4.1


• Host Identification §4.1.1


• Timing §4.1.2


• Arrival §4.1.3


• Integrity §4.1.4


• Hop-Specific Information §4.2


• Topology


• Queue Performance
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• Path Change Detection


• Path Queue Delay
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Candidate Primitive: 
Timing Information §4.1.2

• TCP TSOPT (RFC 7313) is almost right...


• ...but not designed for passive measurement


• Approach: add a Tnow, Techo, TΔ tuple to packets:


• Tnow = timestamp in constant-rate clock


• Techo = last timestamp seen from peer


• TΔ = ticks in constant-rate clock since Techo seen


• Resolution-overhead tradeoff: can be sent on 1/n packets.
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Candidate Primitive: 
Arrival Information §4.1.3

• Makes pattern of loss and reordering visible in a 
transport-independent way.


• Each sender maintains a counter Ntx per flow:


• Increment Ntx by a randomly-chosen but increasing 
number for each packet sent.


• Maintain running sum of received Ntx values as ∑Necho.


• Send {Ntx, ∑Necho} on every packet.


• (inspired by Savage et al. TCP Congestion Control with a Misbehaving Receiver. ACM CCR 29(5), Oct. 1999.)
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Probabilistic and Triggered Stamping §4.2

• Request for information to be added by router 


• at TTL n or with probability p 

• Performance diagnostics: {Tnow, Dqueue, Cqueue} tuple: 
replaces high-load queueing delay measurement.


• Topology discovery: {AS, ID, IPin, IPout} tuple: 
explicit replacement for tracreoute.


• Useful in intradomain applications, with migration to 
interdomain usage.
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Conclusions
• Network measurement is critical. We need better tools, and better tools 

need better support from the network.


• Propose guiding principles for viable measurement.


• Demonstrate candidate primitives that address long-standing, important 
real-world measurement problems.


• Position paper: spur discussion, debate, and inform protocol development. 

• Read the paper:  
https://ccronline.sigcomm.org/wp-content/uploads/2017/05/acmdl17-60.pdf
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