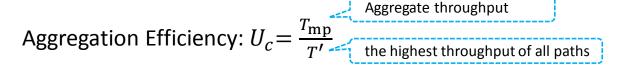
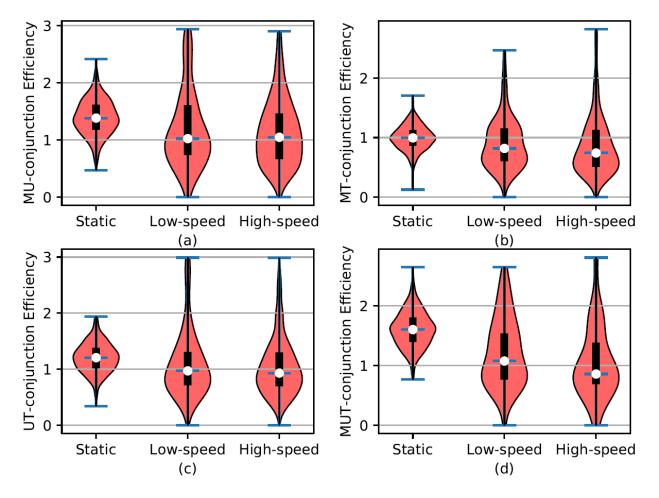
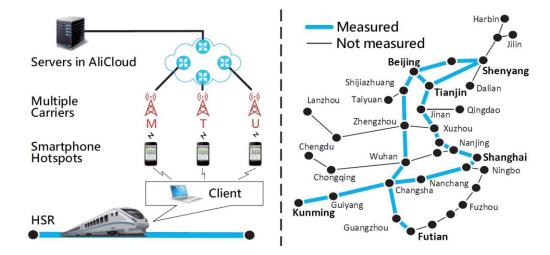

A Proactive Approach to Avoid Performance Degradation of MPTCP

Draft-zuo-mptcp-degradation-00.txt


Authors: F. Wang, Jing Zuo, Z. Cao, K. Zheng, Huawei


MPTCP on high-speed rails


- Two LTE (4G) on high-speed rails
 - ✓ One LTE in smart phone
 - ✓ Another LTE is connected through Wi-Fi hotspots
 - ✓ISPs: China Unicom (U), China Mobile (M), China Telecom (T)
- Attributes of paths
 - ✓ Frequent handoff
 - Variant RTT
 - Severe random packet loss
 - ✓ Throughput variance

MPTCP on High-speed rails

- Scenarios
 - High Speed: 150~310 km/h
 - Low Speed: < 150 km/h
 - Static: park at stations
- Experiments
 - Distance: 66,344 km
 - Data: 3.31 TB
 - Period: 6 months
- Results
 - Performance degradation ($U_{\rm c}$ < 1) in many cases
 - Aggregation is not always efficient

Existing work: Opportunistic retransmission and penalization (OR&P)

What is it?

- Reinjection
- Halve the slow-path CWND
- Aim to ensure that $U_c >= 1$

However, $U_c < 1$ still exists, because it is

- Reactive: triggered when the performance has degraded
- Always trying to aggregate: this can be a problem !

One path may be better

- Achievable aggregate throughput packet loss is not considered $\checkmark T_{mp}$ = buf/RTT_{max}, where buf denotes the size of buffer /_{mp} It is better to only use use **two** paths the best path • $RTT_{max} = max(RTT_i)$ ✓ Specially, T_{mp} <= T', when $(T_1 + T_2)$ • buf <= RTT_{max}·T'. T' • $T' = max(T_1,T_2)$ • If buf <= RTT_{max}·T' and bonding two paths RTT_{max}•T' RTT_{max} ($T_1 + T_2$) buf $\checkmark T_{\rm mp} <= T'$
 - ✓ Serious HoL blocking

Only use the best path may be better in some cases

Need a new solution

It should be:

- take **proactive actions** based on path attributes
- Adaptively employ both paths or only the best one according to the attributes

However, proactive actions can be counter-productive, because

- Throughputs of every single path and aggregated paths are needed
- Often estimated as CWND/RTT, which is not accurate due to severely variant CWND (caused by random packet losses)

BBR helps

BBR is part of mptcp since v0.93 BBR helps proactive measurement by offering:

• Stable throughput

✓ The throughput estimation of BBR is not a loss based cc.

• Stable RTT

✓ The pacing of BBR reduces the buffer bloat

Our solution with BBR

Challenge:

• How to get the throughput of each path and MP

Existing solutions:

- Modelling
 - \checkmark Modelling with path attributes, e.g. RTT, PLR, BW, etc.
- Measurement
 - \checkmark One-by-one throughput measurement of each path and MP
 - ✓ Out-of-band measurement, e.g. PCP (draft-wing-mptcp-pcp-00)

Overview

- Directly measure the throughputs of each path and MP
- Modification only in the sender
- Simultaneously measure the throughput of each path
- Periodically measure

Proactive approach to Avoid the Performance Degradation (PAPD)

Throughput measurement

- Redundant mode
 - Simultaneously measure the throughputs of each path and the best path
- MP mode
 - \checkmark Measure the aggregate throughput of MP layer

Mode Selection (Redundant vs MP)

• For the redundant mode, select the best path accordingly

A	PP Layer
Transport Layer	
MP Layer	
PAI	PD Module
Redundant Mode	MP Mode
Subflow Layer	
Path 1	Path 2

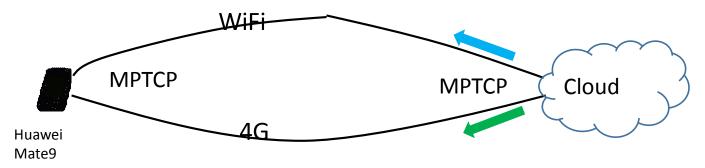
IP Layer

Two stages of PAPD

- Slow-start stage \rightarrow only use redundant mode
 - Unknown attributes of the paths
 - CWND increases twice after each RTT
 - The CWND of each path increases isolated, due to different RTT and delayed subflow connection
- Congestion-avoidance stage \rightarrow the better mode wins
 - Fully utilized paths
 - Time-variant networks

Results – with large and small buffers

- When Buffer is large enough, minRTT is good enough
- PAPD performs equally well


• When Buffer is small, PAPD outperforms minRTT

RTT ₁	p ₁	RTT₂	p ₂	minRTT	PAPD	The best path
10	0.0001	10	0.0001	183(Mbps)	173	91.4
10	0.0001	10	0.001	183	173	91.4
10	0.0001	10	0.01	182	172	91.4
10	0.001	10	0.0001	183	173	91.4
10	0.001	10	0.001	182	173	91.3
10	0.001	10	0.01	182	172	91.2
10	0.1	10	0.0001	173	165	91.4
10	0.1	10	0.001	171	165	91.3
10	0.1	10	0.01	170	163	90.5

RTT ₁	p 1	RTT ₂	p ₂	minRTT	PAPD	The best path	
50	0	100	0.001	72.8	88.5	90.5	
50	0	100	0.01	45.1	85.8	90.3	
50	0	150	0	36.8	84.6	90.1	
50	0	150	0.0001	51.3	86.9	90.5	
50	0	150	0.001	47.7	86.3	90.2	
50	0	150	0.01	30.6	84.7	89.9	
50	0	200	0	26.9	83.4	89.9	MinRTT is
50	0	200	0.0001	30	85.2	90.2	26% of the
50	0	200	0.001	36.8	84.8	90	best path
50	0	200	0.01	23.4	83.7	90	

Mobile-Cloud Scenario: PAPD performs better than min-RTT when RTT variance increases

Testing scenario: Huawei Mate 9 downloads a large file (380M) from Huawei Cloud.

	\\/: [:	Dolou	W:D:	4G	40										
Scenario	WiFi RTT(Avg./Range)	Delay (jitter)ms	WiFi PLR	RTT(Avg./Ran ge)	4G PLR		80 -								_
1	54ms/49-167ms	0	0%	96ms/67-336	0%		70 - 60 -								_
2	58ms/48-185ms	0	0.10%	96ms/67-336	0.10%	ıput	50 -		<u> </u>						WiFi
3	165ms/146- 165ms	100(10)	2.00%	96ms/67-336	0.10%	Throughput	40 -			_					 LTE minRTT
4	371ms/235- 625ms	200 (20)	2.00%	96ms/67-336	0.10%		30 -								PAPD
5	435ms/324- 655ms	300 (30)	2.00%	96ms/67-336	0.10%		10 -				\cup				_
L	1	, , , , , , , , , , , , , , , , , , ,	1			J	o -	1	2	,	3	4	, I	5	-

Scenarios

Page 12

Thank you Questions?

Any interests in continuing this work/direction?