SOCKS Protocol Version 6 (update)
draft-olteanu-intarea-socks-6-01

Vladimir Olteanu, Dragoș Niculescu
University Politehnica of Bucharest
Motivation

- SOCKSv5 makes liberal use of round trips
 - Authentication method negotiation
 - Authentication
 - Remote connection establishment

- 0-RTT authentication possible after pre-negotiation

- Hot use case: “Bond” 3G/4G/LTE and WiFi using MPTCP
 - Little to no MPTCP support on the server side
 - Use proxy to convert to regular TCP
 - Mobile networks have high latency
Improvements over v5

- Client sends as much information as possible upfront
 - Optimistic, doesn’t wait for authentication to conclude
 - Method advertisement, server address, some application data
- Client can specify if it wants TFO on the proxy-server leg
- Extensible: TCP-like options
- 0-RTT authentication support via options
SOCKSv5 vs. SOCKSv6 [1/2]
SOCKSv5 vs. SOCKSv6 [2/2]

- Can include authentication data in the request on subsequent connections
Security

• Deprecate support for encryption
• Just run SOCKS over TLS

• TLS 1.3 has support for early data
 – 0-RTT overhead
 – Prone to replay attacks

• Need mechanism that makes SOCKS requests idempotent
Idempotence options

- **Authenticated** clients can be granted single-use Tokens
 - Tokens are assigned on a per-user basis
- A Token can only be spent on a single operation
 - Proxies and clients keep track of spent Tokens

- Part of SOCKS Requests and Operation Replies
Requesting Tokens

SOCKSv6

Proxy Client

Proxy Server

Request

Auth Reply

Operation Reply
Requesting Tokens

SOCKSv6

Proxy Client

Request + Token Request (Size)

Proxy Server

Auth Reply

Operation Reply

+ Window Advertisement (Base, Size)
Token Request

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Type</th>
<th>Window Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

- Client starts by requesting a number of tokens
 - Can be done as part of a NOOP request
 - Secure, as long as TLS early data is not used
Token Window Advertisement

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Type</th>
<th>Window Base</th>
<th>Window Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- Proxy offers a number of consecutive Tokens
 - Window Base: first token
 - Window Size: number of tokens

- E.g.: base=10, size=3 means that the following tokens are available: 10, 11, 12
Spending Tokens

SOCKSv6

Proxy Client

Request + Token Expenditure (Token)

Auth Reply

Operation Reply

+ Expenditure Reply
+ (Optional) Window
Advertisement (Base, Size)

Proxy Server
Token Expenditure

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Type</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

- Client spends Tokens on Operations
 - Clients SHOULD attempt to spend tokens in order
Token Expenditure Reply

+-----------------------------------+
| Kind | Length | Type | Response Code |
+-----------------------------------+
| 1 | 1 | 1 | 1 |
+-----------------------------------+

- Server replies:
 - Duplicate or out-of-window tokens are rejected
Shifting the token window

+---+
| Kind | Length | Type | Window Base | Window Size |
+---+
| 1 | 1 | 1 | 4 | 4 |
+---+

• Proxies can **unilaterally increment** the Window Base
 - Lowest-order Tokens are discarded, new high-order Tokens are created
 - Send unsolicited Token Window Advertisements to let clients know

• Use cases
 - Ideal: Lowest-order Tokens are spent; shift the base past them
 - The client has begun spending higher-order tokens; shift window past low-order gaps
What’s next for MPTCP?

• Options for influencing the proxy’s behavior
 – Path Manager
 – Scheduler

• Better reverse proxy support
 – Ability to listen() on a socket and have connections forwarded
Comparison to 0-RTT TCP converters

- draft-bonaventure-mptcp-converters-02

- **Similarity:** No control data aside from initial exchange
- **Different starting point:** purely layer 5 protocol
 - Can be run over TLS
 - TFO data not required, but highly beneficial
 - Middlebox doesn’t kill TCP => middlebox doesn’t kill SOCKS
Extra Slides
Token Space

• Tokens are
 – 32-bit unsigned integers
 – in a 32-bit modular space

• \(x < y \) if \((y-x) < 2^{31} \)