SOCKS Protocol Version 6 (update)

draft-olteanu-intarea-socks-6-01

Vladimir Olteanu, Dragoş Niculescu University Politehnica of Bucharest

Motivation

- SOCKSv5 makes liberal use of round trips
 - Authentication method negotiation
 - Authentication
 - Remote connection establishment
- 0-RTT authentication possible after pre-negotiation
- Hot use case: "Bond" 3G/4G/LTE and WiFi using MPTCP
 - Little to no MPTCP support on the server side
 - Use proxy to convert to regular TCP
 - Mobile networks have high latency

Improvements over v5

- Client sends as much information as possible upfront
 - Optimistic, doesn't wait for authentication to conclude
 - Method advertisement, server address, some application data
- Client can specify if it wants TFO on the proxyserver leg
- Extensible: TCP-like options
- 0-RTT authentication support via options

SOCKSv5 vs. SOCKSv6 [1/2]

SOCKSv5 vs. SOCKSv6 [2/2]

 Can include authentication data in the request on subsequent connections

Security

- Deprecate support for encryption
- Just run SOCKS over TLS

- TLS 1.3 has support for early data
 - 0-RTT overhead
 - Prone to replay attacks
- Need mechanism that makes SOCKS requests idempotent

Idempotence options

- Authenticated clients can be granted singleuse Tokens
 - Tokens are assigned on a per-user basis
- A Token can only be spent on a single operation
 - Proxies and clients keep track of spent Tokens

 Part of SOCKS Requests and Operation Replies

Requesting Tokens

Requesting Tokens

Token Request

```
+----+
| Kind | Length | Type | Window Size |
+----+
| 1 | 1 | 1 | 4 | |
+----+
```

- Client starts by requesting a number of tokens
 - Can be done as part of a NOOP request
 - Secure, as long as TLS early data is not used

Token Window Advertisement

```
+----+
| Kind | Length | Type | Window Base | Window Size |
+----+
| 1 | 1 | 1 | 4 | 4 |
+----+
```

- Proxy offers a number of consecutive Tokens
 - Window Base: first token
 - Window Size: number of tokens
- E.g.: base=10, size=3 means that the following tokens are available: 10, 11, 12

Spending Tokens

Token Expenditure

```
+----+
| Kind | Length | Type | Token |
+----+
| 1 | 1 | 1 | 4 |
+----+
```

- Client spends Tokens on Operations
 - Clients SHOULD attempt to spend tokens in order

Token Expenditure Reply

```
+----+
| Kind | Length | Type | Response Code |
+----+
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | +----+
```

- Server replies:
 - Duplicate or out-of-window tokens are rejected

Shifting the token window

- Proxies can unilaterally increment the Window Base
 - Lowest-order Tokens are discarded, new high-order Tokens are created
 - Send unsolicited Token Window Advertisements to let clients know
- Use cases
 - Ideal: Lowest-order Tokens are spent; shift the base past them
 - The client has begun spending higher-order tokens; shift window past low-order gaps

What's next for MPTCP?

- Options for influencing the proxy's behavior
 - Path Manager
 - Scheduler
- Better reverse proxy support
 - Ability to listen() on a socket and have connections forwarded

Comparison to 0-RTT TCP converters

- draft-bonaventure-mptcp-converters-02
- Similarity: No control data aside from initial exchange
- Different starting point: purely layer 5 protocol
 - Can be run over TLS
 - TFO data not required, but highly beneficial
 - Midllebox doesn't kill TCP => middlebox doesn't kill SOCKS

Extra Slides

Token Space

- Tokens are
 - 32-bit unsigned integers
 - in a 32-bit modular space
- $x < y \text{ if } (y-x) < 2^31$