
Post WG LC NMDA datastore
architecture draft

Rob Wilton (Cisco), on behalf of NMDA authors

rwilton@cisco.com

IETF 100, Singapore, Netmod WG

1

draft-ietf-netmod-revised-datastores-06
(changes since -03)

mailto:rwilton@cisco.com

Contents

1. WG LC summary

2. Summary of all changes since -03 version
(Includes changes due to the WG LC)

3. Details on more significant changes

4. Recent Issues

2

WG LC summary

• 18 issues raised/tracked on:
https://github.com/netmod-wg/datastore-dt/issues

• 16 issues closed with resolution text sent to
submitter and WG alias.

• 2 issues from WG LC listed as open:
• RFC 2119 language – just waiting for reviewers to

confirm

• Actions and RPCs …

3

https://github.com/netmod-wg/datastore-dt/issues
https://github.com/netmod-wg/datastore-dt/issues

Summary of changes (since
-03)
1. New objectives section added.

2. Updated to use RFC 2119 language.

3. Origin meta data is restricted to “config true” subset
of <operational>.

4. Definition of “configuration transformations”.

5. Defined “datastore schema” and clarified relationship
between <running>, <intended>, and <operational>.

6. Clarified behaviour of Actions/RPC operations (open
issue).

4

(3) Origin metadata

• Previously applied to all contents of <operational>.

• Now only applies to “config true” subset of
<operational>.

• Three reasons why:

1. It is hard to define origin for “config false” nodes.

2. Difficult to implement.

3. We want a simple efficient encoding:
I.e. if not explicitly specified, the origin of a data node
defaults to the parent node’s origin.

5

(4) Configuration transformations

• New definition added:
 o configuration transformation: The addition, modification or
 removal of configuration between the <running> and
<intended>
 datastores. Examples of configuration transformations
include the
 removal of inactive configuration and the configuration
produced
 through the expansion of templates.

• <intended> is defined as being after all configuration
transformations have been processed to <running>.

• “Inactive configuration” and “templating” are now only used
as examples – i.e. non normative text.

6

Canonical datastores picture:
 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 | +-----------+ |
 +-------->| <running> |<--------+
 | (ct, rw) |
 +-----------+
 |
 | // configuration transformations,
 | // e.g., removal of "inactive"
 | // nodes, expansion of templates
 v
 +------------+
 | <intended> | // subject to validation
 | (ct, ro) |
 +------------+
 | // changes applied, subject to
 | // local factors, e.g., missing
 | // resources, delays
 |
 dynamic | +-------- learned configuration
 configuration | +-------- system configuration
 datastores -----+ | +-------- default configuration
 | | |
 v v v
 +---------------+
 | <operational> | <-- system state
 | (ct + cf, ro) |
 +---------------+

7

(5) Datastore schema & conformance

• New definition added:
 o datastore schema: The combined set of schema nodes for all modules
 supported by a particular datastore, taking into consideration
any
 deviations and enabled features for that datastore.

• All conventional datastores MUST have the same ds schema

• <operational> ds schema is a superset of conventional, but nodes
may be not supported by deviation.

• Note, RFC 7950 does not actually define the term “schema”:

• Schema mount is facing similar issues.

• Should we resolve try and resolve these definitions quickly
and include them in the datastore draft?

8

(5) Updated datastore definitions

<running>:

• MAY include configuration that requires further transformation before it
can be applied,

• is defined as always being valid,

• Whenever <running> is updated, then so is intended.

<intended>:

• Is after all configuration transformations

• <intended> is always valid

• May change independently of running if/when a configuration
transformation changes.

• The contents of <intended> are also related to the "config true“ subset of
<operational>.

9

(5) Updated datastore definitions

<operational>:

• Schema is a superset of all configuration datastores,
except deviations ‘delete’s.

• Defines “in use”, avoid returning irrelevant state
(such as protocols not configured).

• Semantic constraints MAY be violated (including list
keys).

• Syntactic constraints MUST NOT be violated

10

Actions/RPCs

11

The problem is which datastore is used to:

1. Evaluate action ancestor nodes

2. Evaluate action input/output parameter leafref,
instance-identifier, must, when

3. Evaluate rpc input/output parameter leafref,
instance-identifier, must, when

Not related to what the action/RPC actually does,
which is unconstrained.

Actions/RPCs (2)

12

Proposed solution:

• Always use <operational> for 1, 2.

In future (if required):

• Could extend protocols, and perhaps YANG, to
allow Actions/RPCs to be targeted to other
datastores (which would indicate which datastore
any parameters are evaluated against).

Next Steps

Get this draft to complete WG LC ASAP

13

	Slide 1
	Contents
	WG LC summary
	Summary of changes (since -03)
	(3) Origin metadata
	(4) Configuration transformations
	Canonical datastores picture:
	(5) Datastore schema & conformance
	(5) Updated datastore definitions
	(5) Updated datastore definitions
	Actions/RPCs
	Actions/RPCs (2)
	Next Steps

