Chroma from Luma Intra Prediction for NETVC

draft-egge-netvc-cfl-01

Nathan E. Egge
Luc N. Trudeau
David Barr
Mozilla and the Xiph.Org Foundation

IETF 100 - Singapore
2017 Nov 15
What is Chroma from Luma?

Intra prediction tool

No dependencies on other frames

Only available to chroma planes

Predicts chroma using coincident-reconstructed luma pixels
What’s New in -01?

Based on the chroma from luma proposal for AV1
Instead of Daala implementation

No longer relies on PVQ
Prediction is done in the spatial domain

Considers only AC contribution of reconstructed luma pixels
Spatial domain equivalent of shape prediction

Uses existing chroma DC prediction for DC contribution
Available in AV1, requires no signaling and is more precise
What’s different?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction domain</td>
<td>Spatial</td>
<td>Spatial</td>
<td>Frequency</td>
<td>Spatial</td>
</tr>
<tr>
<td>Bitstream signaling</td>
<td>No</td>
<td>No</td>
<td>Sign bit PVQ gain</td>
<td>Signs + Index</td>
</tr>
<tr>
<td>Activation mechanism</td>
<td>LM Mode (4x4, 8x8)</td>
<td>Threshold</td>
<td>Signaled</td>
<td>CFL_PRED (UV-only mode)</td>
</tr>
<tr>
<td>Requires PVQ</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Encoder model fitting</td>
<td>Yes</td>
<td>Yes</td>
<td>Via PVQ</td>
<td>Search</td>
</tr>
<tr>
<td>Decoder model fitting</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

[1] draft-midtskogen-netvc-chromapred-02
[2] draft-egge-netvc-cfl-00
How Does it Work?

Reconstructed Luma Pixels → Subsample → Average

Chroma Transform-Sized Averages (Q3)

Contribution to the AC (in the spatial domain)

Signaled Scaling Factor α (Q3) → Scaled Values (Q0)

DC_PRED (Q0) → CfL Prediction
Why use Chroma DC_PRED?

\(\beta \) is the average chroma reference pixels for a block

\[
\beta = \frac{\sum_{i} \sum_{j} C_{ij} - \alpha \sum_{i} \sum_{j} L_{ij}}{M \times N}
\]

AC contribution is zero mean (it sums to 0)

DC_PRED predicts the average value of a block
By computing the average of the neighboring pixels adjacent to the above and left borders of the block

No Signaling required
What are Scaling Factors (α_{Cb}, α_{Cr})?

Scaling factors set the tone

Scaling factors are in Q3 and range from -2 to 2

Scaling factors are chosen by a rate-constraint search

$$\alpha = \arg\min_{a \in A} (D(CfL(a)) + \lambda R(a))$$

Scaling factors are signaled to the decoder
How are Scaling Factors Signaled?

A sign can either be \([0, -, +]\)

Signs are jointly coded

using an 8-value\(^1\) CDF

Each non-zero scaling factor is coded

using a 16-value CDF \((0,2]\)

Joint sign used as context

\(^1\): \((0,0)\) is not a valid code as it is equivalent to DC_PRED
UV Mode Selection Example
(https://goo.gl/6tKaB8)

- **CFL_PRED** 17%
- **DC_PRED** 44.36%
- **TM_PRED** 7.98%
- **SMOOTH_PRED** 4.85%

Ohashi0806shield.y4m
QP = 55
Results (AWCY High Latency)

Subset 1

<table>
<thead>
<tr>
<th></th>
<th>BD-Rate (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR</td>
<td>PSNR-HVS</td>
<td>SSIM</td>
<td>CIEDE2000</td>
<td>PSNR Cb</td>
<td>PSNR Cr</td>
</tr>
<tr>
<td>Average</td>
<td>-0.46</td>
<td>-0.29</td>
<td>-0.33</td>
<td>-4.65</td>
<td>-12.99</td>
<td>-10.84</td>
</tr>
</tbody>
</table>

Ref: https://arewecompressedyet.com/?job=master%402017-07-26T10%3A40%3A11.180Z&job=cfl-baseline%402017-07-29T00%3A04%3A47.130Z

Objective-1 fast

<table>
<thead>
<tr>
<th></th>
<th>BD-Rate (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR</td>
<td>PSNR-HVS</td>
<td>SSIM</td>
<td>CIEDE2000</td>
<td>PSNR Cb</td>
<td>PSNR Cr</td>
</tr>
<tr>
<td>Average</td>
<td>-0.43</td>
<td>-0.42</td>
<td>-0.38</td>
<td>-2.41</td>
<td>-5.85</td>
<td>-5.51</td>
</tr>
<tr>
<td>1080p</td>
<td>-0.32</td>
<td>-0.37</td>
<td>-0.28</td>
<td>-2.52</td>
<td>-6.80</td>
<td>-5.31</td>
</tr>
<tr>
<td>1080p Screen</td>
<td>-1.82</td>
<td>-1.72</td>
<td>-1.71</td>
<td>-8.22</td>
<td>-17.76</td>
<td>-12.00</td>
</tr>
<tr>
<td>360p</td>
<td>-0.15</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-0.80</td>
<td>-2.17</td>
<td>-6.45</td>
</tr>
<tr>
<td>720p</td>
<td>-0.12</td>
<td>-0.11</td>
<td>-0.07</td>
<td>-0.52</td>
<td>-1.08</td>
<td>-1.23</td>
</tr>
</tbody>
</table>

Ref: https://arewecompressedyet.com/?job=master%402017-09-13&job=cfl-inter%402017-09-13T14%3A13%3A13.918Z

1. **CIEDE2000** is the only metric that combines luma and chroma plane (*The distance measured is more perceptually uniform*)
Awesome for Gaming (Twitch dataset)

<table>
<thead>
<tr>
<th></th>
<th>BD-Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR</td>
</tr>
<tr>
<td>Average</td>
<td>-1.01</td>
</tr>
</tbody>
</table>

Ref: https://arewecompressedyet.com/?job=no-cfl-twitch-cpu2-60frames%402017-09-18T15%3A39%3A17.543Z&job=cfl-inter-twitch-cpu2-60frames%402017-09-18T15%3A40%3A24.181Z

Notable Mentions

<table>
<thead>
<tr>
<th>Game</th>
<th>MD</th>
<th>PSNR</th>
<th>PSNR-HVS</th>
<th>SSIM</th>
<th>CIEDE2000¹</th>
<th>PSNR Cb</th>
<th>PSNR Cr</th>
<th>MS SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minecraft</td>
<td>MINECRAFT_10_120f.y4m</td>
<td>-3.76</td>
<td>-3.13</td>
<td>-3.68</td>
<td>-20.69</td>
<td>-31.44</td>
<td>-25.54</td>
<td>-3.28</td>
</tr>
<tr>
<td>GTA V</td>
<td>GTAV_0_120f.y4m</td>
<td>-1.11</td>
<td>-1.11</td>
<td>-1.01</td>
<td>-5.88</td>
<td>-15.39</td>
<td>-5.57</td>
<td>-1.04</td>
</tr>
<tr>
<td>Starcraft</td>
<td>STARCRAFT_10_120f.y4m</td>
<td>-1.41</td>
<td>-1.43</td>
<td>-1.38</td>
<td>-4.15</td>
<td>-6.18</td>
<td>-6.21</td>
<td>-1.43</td>
</tr>
</tbody>
</table>