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Transform Design Goals

● Exact integer implementation
– Lots of iterated prediction with unstable (gain=1.0) filters, no drift acceptable

● Many variations
– Low bit-depth, high bit-depth, rectangular, DCT, DST, etc.

● High accuracy
– We don’t need to compromise quality for complexity

● Low software complexity
– In particular implementation in SIMD

● Reasonable hardware complexity
– Low latency for small sizes

– Transform re-use/embedded designs
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H.264 4-point DCT

● Very low complexity (8 adds, 2 shifts):

● Drawback: non-uniform scale
– Saves one multiply/coeff. by combining it with quantization

– But costs several multiplies/coeff. when rate-distortion optimizing coefficients in 
an encoder

● Need uniform scale for distortion to make good trade-offs
● Encoder costs multiplied by search space

– Costs a large table of constants (very large for large transform sizes)

● New goal: uniform scaling (4 multiplies)
– Achievable with much less than 1 multiply/coeff for large sizes

[
1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

]
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VP9 4-point DCT

● 6 multiplies (full 32-bit products needed), 8 
adds (2 at 32 bits), 4 shifts
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Avenues for Improvement

● Simplify the multiplies
– Just scaling the output of the H.264 transform only costs 4 

multiplies (but less accurate)

● Scaling
– Adds a factor of √2 relative to a unitary transform

– VP9 adds an additional √2 each time the size doubles

– When log2(width) + log2(height) is even, correct with a shift

– But it’s odd for rectangular transforms (e.g., 8x4)
– Costs 1 multiply/coeff. to correct for
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Extra Scaling

● Where does this scaling come from 
structurally?
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N-point Type II DCT
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N-point Type II DCT
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This part is non-unitary

sqrt(12 + 12) = √2
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N-point Type II DCT
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Getting Rid of the Extra Scaling

● Can use multiplies
– Source of 2 of the multiplies in VP9’s 4-point DCT

– Kind of expensive

● Another approach:
– Restrict ourselves to shifts and adds

– Use asymmetric scaling
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Asymmetric Scaling (1)

● Asymmetric output scales
● Overall scaling remains unity
● Cancel out the asymmetry in subsequent steps
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Asymmetric Scaling (2)

● Asymmetric input scales
● Cancels out the asymmetry from previous steps
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Simplifying the Multiplies

● Multiplies arise from plane rotations between 
two variables

● Can trade one multiply for one addition

[ y 0y1]=[ cos (θ) sin(θ)

−sin (θ) cos(θ)][ x0x1]

p0=x0−
cos (θ)−1
sin (θ)

x1

y1=x1−sin (θ) p0

y0= p0−
cos (θ)−1
sin (θ)

y1
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Asymmetric Scaling Multiplies

● Can also arbitrarily scale inputs and outputs

● Becomes

[ y 0y1]=[
u 0

0
1
stu ] [ cos (θ) sin (θ)

−sin(θ) cos(θ)][ s 0
0 t ][ x0x1]

p0= x0−
t
s
cos (θ)−su
sin (θ)

x1

y1= x1−
sin (θ)

tu
p0

y0= p0−tu
su cos(θ)−1
sin(θ)

y1
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Advantages

● 25% fewer multiplies
– Much more expensive than adds

● All have x += a*y structure
● Becomes x += (a*y + 16384) >> 15 in fixed point

– Only need top part of multiplier output

– 16-bit SIMD stays in 16 bits
● Going to 32 bits halves SIMD throughput

– SSSE3 and NEON both have an instruction for this
● PMULHRSW (parallel multiply high, round, and shift word)
● VQRDMULH.S16 (vector saturated rounding doubled multiply high)

– Single instruction to multiply, add rounding offset, and shift down
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Putting It All Together

● 9 adds, 3 multiplies, 2 shifts
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Putting It All Together

● 9 adds, 3 multiplies, 2 shifts
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8-Point DCT
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16-Point DCT
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And more...

● Up to 64-point DCT implemented
– The margin of this slide is too small to contain...

● Embedded structure
– Both N-point DCT and N-point DST are embedded 

in the 4N-point DCT
● Embedding skips a level because of the asymmetries
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Accuracy (1)

● Right shifts and multiplies introduce rounding errors
● Want to keep these as small as possible
● Solution?

– Shift up input

– Forward transform, quantize, code, inverse transform

– Shift down output

● Diminishing returns at 4 bits (for 8-bit input)
– Enough to make all DCTs match a double-precision floating point 

implementation after rounding to nearest integer
● Error ≤ 0.5
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Accuracy (2)

● How does this compare with VP9?
– Also shifts up inputs (by a smaller amount)

– And shifts down outputs (by a larger amount)
● Sometimes between row and column transforms, too

● Scale of VP9 coefficients grows as transform 
progresses
– Rounding errors early in process get magnified

● Daala: all stages have the same scale
– All errors injected at the same level

– Accumulate, but aren’t magnified
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High Bit Depth

● Accuracy less important for higher bit depths (10 
or 12 bits)
– Importance is accuracy relative to quantizer, and 

higher bit depths use larger quantizers

● We shift up less for higher bit depths
– 10 bits = 2 bit shift

– 12 bits = no shift

● Result: Can use same transforms for all bit depths
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Dynamic Range (1)

● Everything has orthonormal (unitary) scaling
● Dynamic range of the outputs still increases

– Dynamic range = minimum/maximum output values

– Unitary transforms are N-dimensional rotations

– If the input is a box, the length of the diagonal is 
longer than the length of an edge

● By a factor of √2 every time N doubles

● So how big can the outputs be?
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Dynamic Range (2)

● All transforms with 64 pixels or less fit in 16 bits
– 9-bit residual + 4-bit up shift + 3 bits of dynamic range 

expansion

– Includes 4x4, 4x8, 8x4, 8x8, 4x16, 16x4

● All column transforms fit in 16 bits
– Maximum size needed for hardware transpose buffer

● VP9 has larger intermediaries in the transforms, but 
shifts final coefficients down to fit in 16 bits
– Think this is a mis-optimization

– Just as easy to pack during quantization

– Avoids double-rounding, simplifies RDO (no special cases)
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Reversibility (1)

● Steps of the form

    are called lifting steps
● Exactly reversible:

● Inverse transform: just reverse all of the steps
● Why is this good?

x i= xi+ f (x0,… , x i−1 , xi+1 ,… , xN )

x i= xi− f (x0,… , xi−1 , xi+1 ,… , xN )
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Reversibility in Daala

● Daala used lapping instead of a deblocking 
filter

● Deblocking filters are low pass
– Tend to blur out details over consecutive frames

● Forward and inverse lapping are matched
– No low passing

● If that match is not exact, errors will build up 
over multiple frames
– Costs bits to correct
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Reversibility (2)

● Do we need perfect reversibility?
– It seems to help (small coding gain improvements)

– Probably not required, but it’s basically free

– Don’t actually have it in Daala anymore
● 4 bit down shift after inverse breaks it
● Using 12-bit references (even for 8-bit data) restores it [1]
● But using CLPF/deringing also solves the problem

– Adds the low pass filter we were missing from deblocking

[1] https://people.xiph.org/~xiphmont/demo/daala/random.shtml

https://people.xiph.org/~xiphmont/demo/daala/random.shtml
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Reversibility and Dynamic Range

● Transform coefficients values are larger than pixel values
– Forward transform expands dynamic range

● Inverse transform is also an N-dim. rotation
– How do we know it doesn’t expand dynamic range?

● E.g., if x0 and x1 just barely fit in 16 bits, how do we know 
x0 + x1 won’t overflow?

● Answer: Reversibility
– Values computed in inverse same as forward transform

● ± quantization error

– Only guaranteed if coefficients result of transforming pixels
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Type IV vs. Type VII DST

● For intra prediction residuals, prediction error is 
asymmetric
– Less error closer to edges we’re predicting from

● Want an asymmetric transform to code them
● Optimal transform is a Type VII DST

– Compute correlation matrix, solve eigensystem problem 
in the limit as the correlation approaches 1

● Type VII DST factorizations are much nastier than 
Type IVs
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Type VII vs. Type IV DST

● Type IV

● Type VII

yk=∑n=0

N−1
xnsin ( π

N (n+ 12 )(k + 12 ))

yk=√
2

N+
1
2

∑n=0

N−1
xnsin (

π

N +
1
2

(n+1 )(k + 12 ))
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Type VII vs. Type IV

● Type IV transforms almost as good, and 
already embedded inside our DCTs

● Current approach
– Use Type VII for small DSTs (4-point and 8-point)

– Use embedded Type IV for larger DSTs
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Overall Complexity

● [1] SIMD benchmarked at 26.2% faster
● [2] Daala TX uses a Type VII DST, while TXMG uses a Type IV

Daala TX TXMG

muls/coeff adds/coeff shifts/coeff muls/coeff adds/coeff shifts/coeff

DCT 4 1 2 0.5 2 2 1

DST 4 1.25 2.75 0.5 3 2.5 1.5

DCT 8 [1] 1.875 3.875 0.625 2.5 3.25 1.25

DST 8 [2] 2.625 9.375 2.25 4 4 2

DCT 16 2.0625 5.1875 1 3.25 4.625 1.625

DST 16 3.1875 6.1875 1.25 5 5.5 2.5

DCT 32 2.7188 6.2188 1.1875 4.125 6.0625 2.0625

DST 32 3.6562 7.6562 1.125 6 7 3
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Hardware Considerations (1)

● Intra prediction requires reconstructed pixels 
from neighboring blocks

● This serializes reconstruction of these blocks
– Including the inverse transform

– Particularly a problem for encoders

● Our 3-multiply rotations chain them all 
consecutively

● This is a bottleneck for small transform sizes
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Low-Latency Small Transforms

● 4-point DCT: replace 3-multiply block with 4-
multiply version
– All multiplies can proceed in parallel

– Still only use top part of multiply
● Full SIMD throughput

● 4-point Type VII DST:
– Use custom factorization with 5 parallel multiplies

● These are not exactly reversible
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Hardware Considerations (2)

● Most hardware already “multi-standard”
– Including VP9

● Dedicates a lot of gates to parallel multipliers
● Can replace serial multiplies in rotations with 

parallel multiplies

● Still experimenting to see impact on accuracy, 
potential for overflows

u0= x0+ x1
u1=(1+ab)u0

u2=(b(a−1)+1) x0
u3=(a+(a−1)(1+ab)) x1

y0=u1+u3
y1=u1−u2

u0=x0+a x1
y1=u0+bu0
y0= y1+a x1

becomes
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Questions?
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