Daala Transforms

Timothy B. Terriberry
Nathan Egge
Christopher "Monty" Montgomery

Transform Design Goals

- Exact integer implementation
- Lots of iterated prediction with unstable (gain=1.0) filters, no drift acceptable
- Many variations
- Low bit-depth, high bit-depth, rectangular, DCT, DST, etc.
- High accuracy
- We don't need to compromise quality for complexity
- Low software complexity
- In particular implementation in SIMD
- Reasonable hardware complexity
- Low latency for small sizes
- Transform re-use/embedded designs

H. 264 4-point DCT

- Very low complexity (8 adds, 2 shifts):
- Drawback: non-uniform scale

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 1 & -1 & -2 \\
1 & -1 & -1 & 1 \\
1 & -2 & 2 & -1
\end{array}\right]
$$

- Saves one multiply/coeff. by combining it with quantization
- But costs several multiplies/coeff. when rate-distortion optimizing coefficients in an encoder
- Need uniform scale for distortion to make good trade-offs
- Encoder costs multiplied by search space
- Costs a large table of constants (very large for large transform sizes)
- New goal: uniform scaling (4 multiplies)
- Achievable with much less than 1 multiply/coeff for large sizes

VP9 4-point DCT

- 6 multiplies (full 32-bit products needed), 8 adds (2 at 32 bits), 4 shifts

Avenues for Improvement

- Simplify the multiplies
- Just scaling the output of the H. 264 transform only costs 4 multiplies (but less accurate)
- Scaling
- Adds a factor of $\sqrt{ } 2$ relative to a unitary transform
- VP9 adds an additional $\sqrt{ }$ 2 each time the size doubles
- When $\log _{2}($ width $)+\log _{2}($ height $)$ is even, correct with a shift
- But it's odd for rectangular transforms (e.g., 8x4)
- Costs 1 multiply/coeff. to correct for

Extra Scaling

- Where does this scaling come from structurally?

N-point Type II DCT

N-point Type II DCT

This part is non-unitary

$$
\operatorname{sqrt}\left(1^{2}+1^{2}\right)=\sqrt{ } 2
$$

N-point Type II DCT

Getting Rid of the Extra Scaling

- Can use multiplies
- Source of 2 of the multiplies in VP9's 4-point DCT
- Kind of expensive
- Another approach:
- Restrict ourselves to shifts and adds
- Use asymmetric scaling

Asymmetric Scaling (1)

- Asymmetric output scales
- Overall scaling remains unity
- Cancel out the asymmetry in subsequent steps

Asymmetric Scaling (2)

- Asymmetric input scales
- Cancels out the asymmetry from previous steps

Simplifying the Multiplies

- Multiplies arise from plane rotations between two variables

$$
\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1}
\end{array}\right]
$$

- Can trade one multiply for one addition

$$
\begin{gathered}
p_{0}=x_{0}-\frac{\cos (\theta)-1}{\sin (\theta)} x_{1} \\
y_{1}=x_{1}-\sin (\theta) p_{0} \\
y_{0}=p_{0}-\frac{\cos (\theta)-1}{\sin (\theta)} y_{1}
\end{gathered}
$$

Asymmetric Scaling Multiplies

- Can also arbitrarily scale inputs and outputs

$$
\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=\left[\begin{array}{cc}
u & 0 \\
0 & \frac{1}{s t u}
\end{array}\right]\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{cc}
s & 0 \\
0 & t
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1}
\end{array}\right]
$$

- Becomes

$$
\begin{gathered}
p_{0}=x_{0}-\frac{t}{s} \frac{\cos (\theta)-s u}{\sin (\theta)} x_{1} \\
y_{1}=x_{1}-\frac{\sin (\theta)}{t u} p_{0} \\
y_{0}=p_{0}-t u \frac{s u \cos (\theta)-1}{\sin (\theta)} y_{1}
\end{gathered}
$$

Advantages

- 25\% fewer multiplies
- Much more expensive than adds
- All have $x+=a^{\star} y$ structure
- Becomes $x+=\left(a^{*} y+16384\right) \gg 15$ in fixed point
- Only need top part of multiplier output
- 16-bit SIMD stays in 16 bits
- Going to 32 bits halves SIMD throughput
- SSSE3 and NEON both have an instruction for this
- PMULHRSW (parallel multiply high, round, and shift word)
- VQRDMULH.S16 (vector saturated rounding doubled multiply high)
- Single instruction to multiply, add rounding offset, and shift down

Putting It All Together

- 9 adds, 3 multiplies, 2 shifts

$$
M_{0}=\frac{2 \cos \left(\frac{3 \pi}{8}\right)-\sqrt{2}}{\sin \left(\frac{3 \pi}{8}\right)} \quad M_{1}=\sqrt{\frac{1}{2}} \sin \left(\frac{3 \pi}{8}\right) \quad M_{2}=\frac{\cos \left(\frac{3 \pi}{8}\right)-\sqrt{2}}{\sin \left(\frac{3 \pi}{8}\right)}
$$

Putting It All Together

- 9 adds, 3 multiplies, 2 shifts

$$
M_{0}=\frac{2 \cos \left(\frac{3 \pi}{8}\right)-\sqrt{2}}{\sin \left(\frac{3 \pi}{8}\right)} \quad M_{1}=\sqrt{\frac{1}{2}} \sin \left(\frac{3 \pi}{8}\right) \quad M_{2}=\frac{\cos \left(\frac{3 \pi}{8}\right)-\sqrt{2}}{\sin \left(\frac{3 \pi}{8}\right)}
$$

8-Point DCT

16-Point DCT

And more...

- Up to 64-point DCT implemented
- The margin of this slide is too small to contain...
- Embedded structure
- Both N-point DCT and N-point DST are embedded in the 4 N -point DCT
- Embedding skips a level because of the asymmetries

Accuracy (1)

- Right shifts and multiplies introduce rounding errors
- Want to keep these as small as possible
- Solution?
- Shift up input
- Forward transform, quantize, code, inverse transform
- Shift down output
- Diminishing returns at 4 bits (for 8-bit input)
- Enough to make all DCTs match a double-precision floating point implementation after rounding to nearest integer
- Error ≤ 0.5

Accuracy (2)

- How does this compare with VP9?
- Also shifts up inputs (by a smaller amount)
- And shifts down outputs (by a larger amount)
- Sometimes between row and column transforms, too
- Scale of VP9 coefficients grows as transform progresses
- Rounding errors early in process get magnified
- Daala: all stages have the same scale
- All errors injected at the same level
- Accumulate, but aren't magnified

High Bit Depth

- Accuracy less important for higher bit depths (10 or 12 bits)
- Importance is accuracy relative to quantizer, and higher bit depths use larger quantizers
- We shift up less for higher bit depths
- 10 bits $=2$ bit shift
- 12 bits = no shift
- Result: Can use same transforms for all bit depths

Dynamic Range (1)

- Everything has orthonormal (unitary) scaling
- Dynamic range of the outputs still increases
- Dynamic range = minimum/maximum output values
- Unitary transforms are N -dimensional rotations
- If the input is a box, the length of the diagonal is longer than the length of an edge
- By a factor of $\sqrt{ } 2$ every time N doubles
- So how big can the outputs be?

Dynamic Range (2)

- All transforms with 64 pixels or less fit in 16 bits
- 9-bit residual + 4-bit up shift +3 bits of dynamic range expansion
- Includes $4 \times 4,4 \times 8,8 \times 4,8 \times 8,4 \times 16,16 \times 4$
- All column transforms fit in 16 bits
- Maximum size needed for hardware transpose buffer
- VP9 has larger intermediaries in the transforms, but shifts final coefficients down to fit in 16 bits
- Think this is a mis-optimization
- Just as easy to pack during quantization
- Avoids double-rounding, simplifies RDO (no special cases)

Reversibility (1)

- Steps of the form

$$
x_{i}=x_{i}+f\left(x_{0,}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{N}\right)
$$

are called lifting steps

- Exactly reversible:

$$
x_{i}=x_{i}-f\left(x_{0,}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{N}\right)
$$

- Inverse transform: just reverse all of the steps
- Why is this good?

Reversibility in Daala

- Daala used lapping instead of a deblocking filter
- Deblocking filters are low pass
- Tend to blur out details over consecutive frames
- Forward and inverse lapping are matched
- No low passing
- If that match is not exact, errors will build up over multiple frames
- Costs bits to correct

Reversibility (2)

- Do we need perfect reversibility?
- It seems to help (small coding gain improvements)
- Probably not required, but it's basically free
- Don't actually have it in Daala anymore
- 4 bit down shift after inverse breaks it
- Using 12-bit references (even for 8-bit data) restores it [1]
- But using CLPF/deringing also solves the problem
- Adds the low pass filter we were missing from deblocking

Reversibility and Dynamic Range

- Transform coefficients values are larger than pixel values
- Forward transform expands dynamic range
- Inverse transform is also an N-dim. rotation
- How do we know it doesn't expand dynamic range?
- E.g., if x_{0} and x_{1} just barely fit in 16 bits, how do we know $x_{0}+x_{1}$ won't overflow?
- Answer: Reversibility
- Values computed in inverse same as forward transform
- \pm quantization error
- Only guaranteed if coefficients result of transforming pixels

Type IV vs. Type VII DST

- For intra prediction residuals, prediction error is asymmetric
- Less error closer to edges we're predicting from
- Want an asymmetric transform to code them
- Optimal transform is a Type VII DST
- Compute correlation matrix, solve eigensystem problem in the limit as the correlation approaches 1
- Type VII DST factorizations are much nastier than Type IVs

Type VII vs. Type IV DST

- Type IV

$$
y_{k}=\sum_{n=0}^{N-1} x_{n} \sin \left(\frac{\pi}{N}\left(n+\frac{1}{2}\right)\left(k+\frac{1}{2}\right)\right)
$$

- Type VII

$$
y_{k}=\sqrt{\frac{2}{N+\frac{1}{2}}} \sum_{n=0}^{N-1} x_{n} \sin \left(\frac{\pi}{N+\frac{1}{2}}(n+1)\left(k+\frac{1}{2}\right)\right)
$$

Type VII vs. Type IV

- Type IV transforms almost as good, and already embedded inside our DCTs
- Current approach
- Use Type VII for small DSTs (4-point and 8-point)
- Use embedded Type IV for larger DSTs

Overall Complexity

| | muls/coeff | adds/coeff | shifts/coeff | muls/coeff | adds/coeff | shifts/coeff |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1 | 2 | 0.5 | 2 | 2 | 1 |
| DCT 4 | 1.25 | 2.75 | 0.5 | 3 | 2.5 | 1.5 |
| DST 4 | 1.25 | 3.875 | 0.625 | 2.5 | 3.25 | 1.25 |
| DCT 8 [1] | 1.875 | 9.375 | 2.25 | 4 | 4 | 2 |
| DST 8 [2] | 2.625 | 5.1875 | 1 | 3.25 | 4.625 | 1.625 |
| DCT 16 | 2.0625 | 1.25 | 5 | 5.5 | 2.5 | |
| DST 16 | 3.1875 | 6.1875 | 1.25 | 4.125 | 6.0625 | 2.0625 |
| DCT 32 | 2.7188 | 6.2188 | 1.1875 | 6 | 7 | 3 |
| DST 32 | 3.6562 | 7.6562 | 1.125 | 6 | | |

- [1] SIMD benchmarked at 26.2\% faster
- [2] Daala TX uses a Type VII DST, while TXMG uses a Type IV

Hardware Considerations (1)

- Intra prediction requires reconstructed pixels from neighboring blocks
- This serializes reconstruction of these blocks
- Including the inverse transform
- Particularly a problem for encoders
- Our 3-multiply rotations chain them all consecutively
- This is a bottleneck for small transform sizes

Low-Latency Small Transforms

- 4-point DCT: replace 3-multiply block with 4multiply version
- All multiplies can proceed in parallel
- Still only use top part of multiply
- Full SIMD throughput
- 4-point Type VII DST:
- Use custom factorization with 5 parallel multiplies
- These are not exactly reversible

Hardware Considerations (2)

- Most hardware already "multi-standard"
- Including VP9
- Dedicates a lot of gates to parallel multipliers
- Can replace serial multiplies in rotations with parallel multiplies

$$
\begin{aligned}
& u_{0}=x_{0}+a x_{1} \\
& y_{1}=u_{0}+b u_{0} \\
& y_{0}=y_{1}+a x_{1}
\end{aligned}
$$

becomes

$$
\begin{gathered}
u_{0}=x_{0}+x_{1} \\
u_{1}=(1+a b) u_{0} \\
u_{2}=(b(a-1)+1) x_{0} \\
u_{3}=(a+(a-1)(1+a b)) x_{1} \\
y_{0}=u_{1}+u_{3} \\
y_{1}=u_{1}-u_{2}
\end{gathered}
$$

- Still experimenting to see impact on accuracy, potential for overflows

Questions?

