Daala Transforms

Timothy B. Terriberry Nathan Egge Christopher "Monty" Montgomery

Transform Design Goals

- Exact integer implementation
 - Lots of iterated prediction with unstable (gain=1.0) filters, no drift acceptable
- Many variations
 - Low bit-depth, high bit-depth, rectangular, DCT, DST, etc.
- High accuracy
 - We don't need to compromise quality for complexity
- Low software complexity
 - In particular implementation in SIMD
- Reasonable hardware complexity
 - Low latency for small sizes
 - Transform re-use/embedded designs

H.264 4-point DCT

• Very low complexity (8 adds, 2 shifts):

- Drawback: non-uniform scale
 - Saves one multiply/coeff. by combining it with quantization
 - But costs several multiplies/coeff. when rate-distortion optimizing coefficients in an encoder
 - Need uniform scale for distortion to make good trade-offs
 - Encoder costs multiplied by search space
 - Costs a large table of constants (very large for large transform sizes)
- New goal: uniform scaling (4 multiplies)
 - Achievable with much less than 1 multiply/coeff for large sizes

VP9 4-point DCT

 6 multiplies (full 32-bit products needed), 8 adds (2 at 32 bits), 4 shifts

Avenues for Improvement

- Simplify the multiplies
 - Just scaling the output of the H.264 transform only costs 4 multiplies (but less accurate)
- Scaling
 - Adds a factor of $\sqrt{2}$ relative to a unitary transform
 - VP9 adds an additional $\sqrt{2}$ each time the size doubles
 - When $log_2(width) + log_2(height)$ is even, correct with a shift
 - But it's odd for rectangular transforms (e.g., 8x4)
 - Costs 1 multiply/coeff. to correct for

Extra Scaling

• Where does this scaling come from structurally?

N-point Type II DCT

N-point Type II DCT

 $sqrt(1^2 + 1^2) = \sqrt{2}$

N-point Type II DCT

 $sqrt(1^2 + 1^2) = \sqrt{2}$

Getting Rid of the Extra Scaling

- Can use multiplies
 - Source of 2 of the multiplies in VP9's 4-point DCT
 - Kind of expensive
- Another approach:
 - Restrict ourselves to shifts and adds
 - Use asymmetric scaling

- Asymmetric output scales
- Overall scaling remains unity
- Cancel out the asymmetry in subsequent steps

- Asymmetric input scales
- Cancels out the asymmetry from previous steps

Simplifying the Multiplies

Multiplies arise from *plane rotations* between two variables

$$\begin{bmatrix} y_0 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

• Can trade one multiply for one addition

$$p_0 = x_0 - \frac{\cos(\theta) - 1}{\sin(\theta)} x_1$$
$$y_1 = x_1 - \sin(\theta) p_0$$
$$y_0 = p_0 - \frac{\cos(\theta) - 1}{\sin(\theta)} y_1$$

Asymmetric Scaling Multiplies

Can also arbitrarily scale inputs and outputs

$$\begin{bmatrix} y_0 \\ y_1 \end{bmatrix} = \begin{bmatrix} u & 0 \\ 0 & \frac{1}{stu} \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

Becomes

$$p_0 = x_0 - \frac{t}{s} \frac{\cos(\theta) - su}{\sin(\theta)} x_1$$
$$y_1 = x_1 - \frac{\sin(\theta)}{tu} p_0$$
$$y_0 = p_0 - tu \frac{su\cos(\theta) - 1}{\sin(\theta)} y_1$$

Advantages

- 25% fewer multiplies
 - Much more expensive than adds
- All have x += a*y structure
- Becomes x += (a*y + 16384) >> 15 in fixed point
 - Only need top part of multiplier output
 - 16-bit SIMD stays in 16 bits
 - Going to 32 bits halves SIMD throughput
 - SSSE3 and NEON both have an instruction for this
 - PMULHRSW (parallel multiply high, round, and shift word)
 - VQRDMULH.S16 (vector saturated rounding doubled multiply high)
 - Single instruction to multiply, add rounding offset, and shift down

Putting It All Together

• 9 adds, 3 multiplies, 2 shifts

Putting It All Together

• 9 adds, 3 multiplies, 2 shifts

8-Point DCT

16-Point DCT

And more...

- Up to 64-point DCT implemented
 - The margin of this slide is too small to contain...
- Embedded structure
 - Both N-point DCT and N-point DST are embedded in the 4N-point DCT
 - Embedding skips a level because of the asymmetries

Accuracy (1)

- Right shifts and multiplies introduce rounding errors
- Want to keep these as small as possible
- Solution?
 - Shift up input
 - Forward transform, quantize, code, inverse transform
 - Shift down output
- Diminishing returns at 4 bits (for 8-bit input)
 - Enough to make all DCTs match a double-precision floating point implementation after rounding to nearest integer
 - Error ≤ 0.5

Accuracy (2)

- How does this compare with VP9?
 - Also shifts up inputs (by a smaller amount)
 - And shifts down outputs (by a larger amount)
 - Sometimes between row and column transforms, too
- Scale of VP9 coefficients grows as transform progresses
 - Rounding errors early in process get magnified
- Daala: all stages have the same scale
 - All errors injected at the same level
 - Accumulate, but aren't magnified

High Bit Depth

- Accuracy less important for higher bit depths (10 or 12 bits)
 - Importance is accuracy *relative* to quantizer, and higher bit depths use larger quantizers
- We shift up less for higher bit depths
 - 10 bits = 2 bit shift
 - 12 bits = no shift
- Result: Can use same transforms for all bit depths

Dynamic Range (1)

- Everything has orthonormal (unitary) scaling
- Dynamic range of the outputs still increases
 - Dynamic range = minimum/maximum output values
 - Unitary transforms are N-dimensional rotations
 - If the input is a box, the length of the diagonal is longer than the length of an edge
 - By a factor of $\sqrt{2}$ every time N doubles
- So how big can the outputs be?

Dynamic Range (2)

- All transforms with 64 pixels or less fit in 16 bits
 - 9-bit residual + 4-bit up shift + 3 bits of dynamic range expansion
 - Includes 4x4, 4x8, 8x4, 8x8, 4x16, 16x4
- All column transforms fit in 16 bits
 - Maximum size needed for hardware transpose buffer
- VP9 has larger intermediaries in the transforms, but shifts final coefficients down to fit in 16 bits
 - Think this is a mis-optimization
 - Just as easy to pack during quantization
 - Avoids double-rounding, simplifies RDO (no special cases)

Reversibility (1)

• Steps of the form

$$x_i = x_i + f(x_{0,...,x_{i-1}}, x_{i+1}, ..., x_N)$$

are called *lifting steps*

- Exactly reversible: $x_i = x_i - f(x_{0,...,x_{i-1}}, x_{i+1}, ..., x_N)$
- Inverse transform: just reverse all of the steps
- Why is this good?

Reversibility in Daala

- Daala used lapping instead of a deblocking filter
- Deblocking filters are *low pass*
 - Tend to blur out details over consecutive frames
- Forward and inverse lapping are *matched*
 - No low passing
- If that match is not *exact*, errors will build up over multiple frames
 - Costs bits to correct

Reversibility (2)

- Do we need perfect reversibility?
 - It seems to help (small coding gain improvements)
 - Probably not *required*, but it's basically free
 - Don't actually have it in Daala anymore
 - 4 bit down shift after inverse breaks it
 - Using 12-bit references (even for 8-bit data) restores it [1]
 - But using CLPF/deringing also solves the problem
 - Adds the low pass filter we were missing from deblocking

Reversibility and Dynamic Range

- Transform coefficients values are larger than pixel values
 Forward transform expands dynamic range
- Inverse transform is also an N-dim. rotation
 - How do we know it doesn't expand dynamic range?
- E.g., if x_0 and x_1 just barely fit in 16 bits, how do we know $x_0 + x_1$ won't overflow?
- Answer: Reversibility
 - Values computed in inverse same as forward transform
 - ± quantization error
 - Only guaranteed if coefficients result of transforming pixels

Type IV vs. Type VII DST

- For intra prediction residuals, prediction error is asymmetric
 - Less error closer to edges we're predicting from
- Want an asymmetric transform to code them
- Optimal transform is a Type VII DST
 - Compute correlation matrix, solve eigensystem problem in the limit as the correlation approaches 1
- Type VII DST factorizations are much nastier than Type IVs

Type VII vs. Type IV DST

• Type IV

$$y_k = \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi}{N}\left(n + \frac{1}{2}\right)\left(k + \frac{1}{2}\right)\right)$$

Type VII

$$y_{k} = \sqrt{\frac{2}{N + \frac{1}{2}}} \sum_{n=0}^{N-1} x_{n} \sin\left(\frac{\pi}{N + \frac{1}{2}} (n+1)\left(k + \frac{1}{2}\right)\right)$$

Type VII vs. Type IV

- Type IV transforms *almost* as good, and already embedded inside our DCTs
- Current approach
 - Use Type VII for small DSTs (4-point and 8-point)
 - Use embedded Type IV for larger DSTs

Overall Complexity

		Daala TX			TXMG	
	muls/coeff	adds/coeff	shifts/coeff	muls/coeff	adds/coeff	shifts/coeff
DCT 4	1	2	0.5	2	2	1
DST 4	1.25	2.75	0.5	3	2.5	1.5
DCT 8 [1]	1.875	3.875	0.625	2.5	3.25	1.25
DST 8 [2]	2.625	9.375	2.25	4	4	2
DCT 16	2.0625	5.1875	1	3.25	4.625	1.625
DST 16	3.1875	6.1875	1.25	5	5.5	2.5
DCT 32	2.7188	6.2188	1.1875	4.125	6.0625	2.0625
DST 32	3.6562	7.6562	1.125	6	7	3

- [1] SIMD benchmarked at 26.2% faster
- [2] Daala TX uses a Type VII DST, while TXMG uses a Type IV

Hardware Considerations (1)

- Intra prediction requires reconstructed pixels from neighboring blocks
- This serializes reconstruction of these blocks
 - Including the inverse transform
 - Particularly a problem for encoders
- Our 3-multiply rotations chain them all consecutively
- This is a bottleneck for small transform sizes

Low-Latency Small Transforms

- 4-point DCT: replace 3-multiply block with 4multiply version
 - All multiplies can proceed in parallel
 - Still only use top part of multiply
 - Full SIMD throughput
- 4-point Type VII DST:
 - Use custom factorization with 5 parallel multiplies
- These are not exactly reversible

Hardware Considerations (2)

- Most hardware already "multi-standard"
 - Including VP9
- Dedicates a lot of gates to parallel multipliers
- Can replace serial multiplies in rotations with parallel multiplies $u_0 = x_0 + x_1$

$$u_{0} = x_{0} + a x_{1}$$

$$y_{1} = u_{0} + b u_{0}$$

$$y_{0} = y_{1} + a x_{1}$$

$$u_{2} = (b(a-1)+1) x_{0}$$

$$u_{3} = (a + (a-1)(1+ab)) x_{1}$$

$$y_{0} = u_{1} + u_{3}$$

$$y_{1} = u_{1} - u_{2}$$

 Still experimenting to see impact on accuracy, potential for overflows

 $u_1 = (1 + ab)u_0$

Questions?