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Knowledge-Defined Networking

A Knowledge plane, on top of control
and management planes, should allow
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— The full control provided by the
(logically) centralized management
and control planes

 Which Machine Learning technique?
* How we apply it?
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Deep Reinforcement Learning

Action:
Left? Right?
Straight?

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning.” Nature
518.7540 (2015): 529-533.




Deep Reinforcement Learning
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DRL: Internal Architecture

* DRL = Reinforcement Leraning +
Deep Learning

* Novel Actor/Critic Architecture
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- Exploration vs. Exploitation
Mnih, Volodymyr, et al. "Human-level control through deep
reinforcement learning." Nature 518.7540 (2015): 529-533. ° EXplOFatIOnZ Tralnlng on the

system

* Exploitation: Optimization of the
system
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DRL for SDN Routing
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DRL for SDN Routing
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Methodology

Large - Realistic topology of
79 nodes and over 200 links Optimization Algorithm
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B. Quoitin et al., “IGen: Generation of router-level Internet
topologies through network design heuristics,” in ITC, 2009.



Results: Learning Rate

training steps
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Results: Performance
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DRL: Operatinal Advantages

* Fully Autonomous
— Does not require prior knowledge of the network
— Works online and in real-time
— Learns and optimizes autonomously

* Advantages over traditional optimization algorithms

— DRL provides constant time optimization vs. the lengthy
search process of traditional algorithms

— Model-free: Learns from the environment dynamics, no
need for simulation or analytical model.

— Black-box optimization: With DRL agents, different reward
functions can target different policies, without the need of
designing a new algorithm. Traditional algorithms are
taylored to the performance policy.



Challenges of DRL: Training

Real Infrastructure Simulator Expert (Human or Algorithm)
DRL Agent DRL Agent

DRL Agent

May break your network
During the exploration phase!
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Lack of Explainability

* Deep Neural Networks are inherently black
boxes. We don’t know:
— When will it work, when will it fail

— Why does it work, why it doesn’t
 No guarantees, no troubleshooting

* Solution: Explainable Artificial Intelligence

— Aims to develop techniques to develop
explainable neural networks

Samek, Wojciech, Thomas Wiegand, and Klaus-Robert Muller. "Explainable Artificial
Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models." arXiv
preprint arXiv:1708.08296 (2017).



Reward function = Network Management Policy

 The reward function effectively represents, in
a mathematical language, the network
management policy
* Open questions
— Can we actually represent any network policy?
* Are there fundamental limitations?

— How can we compile existing network policy
languages to the mathematical language?



Summary & Conclusions

* Deep Reinforcement Learning represents the full
realization of an autonomous intelligent network

* Many advantages
— Real-time operation (constant-time optimization)
— Plug & Play (black-box operation)
— No configuration, just pick the reward function

* Challenges
— Training: Online, offline or via an expert
— No guarantees: Towards explainability



Datasets, Code and Papers

 Knowledge-Defined Networking
https://github.com/knowledgedefinednetworking
 DRL for SDN Routing (code and data-sets)

https://github.com/knowledgedefinednetworking/
a-deep-rl-approach-for-sdn-routing-optimization

 Work-in-Progress Paper
https://arxiv.org/pdf/1709.07080.pdf
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