# A Deep-Reinforcement Learning Approach for Software-Defined Networking Routing Optimization

Giorgio Stampa\*, Marta Arias, David Sanchez-Charles, Victor Muntes-Mulero, **Albert Cabellos** <u>acabello@ac.upc.edu</u>

> IETF 100 – NMG RG Singapore, November 2017



## **Knowledge-Defined Networking**

- A Knowledge plane, on top of control and management planes, should allow for:
  - automation & optimization
  - prediction
- Machine Learning can take advantage of:
  - The **full view** provided by the Network Analytics platform
  - The full control provided by the (logically) centralized management and control planes
- Which Machine Learning technique?
- How we apply it?



### Deep Reinforcement Learning



Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.  $\,$ 

### Deep Reinforcement Learning



### DRL: Internal Architecture



Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.

- DRL = Reinforcement Leraning +
  Deep Learning
- Novel Actor/Critic Architecture
  - The Actor acts upon the system
  - The Critic receives the reward function and modifies the weights of the Actor's Neural Network.
- Exploration vs. Exploitation
  - Exploration: Training on the system
  - Exploitation: Optimization of the system

### **DRL for SDN Routing**



# **DRL for SDN Routing**



# Methodology



Simulation: Omnet++

B. Quoitin et al., "IGen: Generation of router-level Internet topologies through network design heuristics," in ITC, 2009.

### Results: Learning Rate



G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntes-Mulero, and A. Cabellos, "A Deep-Reinforcement Learning Approach for Software-Defined Networking Routing Optimization," arXiv preprint arXiv:1709.07080, 2017.

### Results: Performance



G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntes-Mulero, and A. Cabellos, "A Deep-Reinforcement Learning Approach for Software-Defined Networking Routing Optimization," arXiv preprint arXiv:1709.07080, 2017.

### DRL: Operatinal Advantages

#### Fully Autonomous

- Does not require prior knowledge of the network
- Works online and in real-time
- Learns and optimizes autonomously
- Advantages over traditional optimization algorithms
  - DRL provides constant time optimization vs. the lengthy search process of traditional algorithms
  - Model-free: Learns from the environment dynamics, no need for simulation or analytical model.
  - Black-box optimization: With DRL agents, different reward functions can target different policies, without the need of designing a new algorithm. Traditional algorithms are taylored to the performance policy.

# Challenges of DRL: Training



## Lack of Explainability

- Deep Neural Networks are inherently black boxes. We don't know:
  - When will it work, when will it fail
  - Why does it work, why it doesn't
- No guarantees, no troubleshooting
- Solution: Explainable Artificial Intelligence
  - Aims to develop techniques to develop explainable neural networks

Samek, Wojciech, Thomas Wiegand, and Klaus-Robert Müller. "Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models." arXiv preprint arXiv:1708.08296 (2017).

#### Reward function = Network Management Policy

- The reward function effectively represents, in a mathematical language, the network management policy
- Open questions
  - Can we actually represent any network policy?
    - Are there fundamental limitations?
  - How can we compile existing network policy languages to the mathematical language?

### **Summary & Conclusions**

- Deep Reinforcement Learning represents the full realization of an autonomous intelligent network
- Many advantages
  - Real-time operation (constant-time optimization)
  - Plug & Play (black-box operation)
  - No configuration, just pick the reward function
- Challenges
  - Training: Online, offline or via an expert
  - No guarantees: Towards explainability

### Datasets, Code and Papers

Knowledge-Defined Networking
 https://github.com/knowledgedefinednetworking

DRL for SDN Routing (code and data-sets)
 <a href="https://github.com/knowledgedefinednetworking/">https://github.com/knowledgedefinednetworking/</a>
 a-deep-rl-approach-for-sdn-routing-optimization

Work-in-Progress Paper

https://arxiv.org/pdf/1709.07080.pdf