Intelligence lies in simplicity 智慧源于简单,智慧为了简单

Network, All Intelligent. ENI introduction **Experiential Networked Intelligence**

LIU Shucheng(Will), John Strassner, DING Xiaojian

Black + White + Simple Rules = Infinite Strategy 黑与白,最简规则,却蕴含博大的智慧。

0 + 1 = Infinite Computation 0与1,有限元素,却产生无尽的智慧

Brevity is the soul of wit. "简洁是智慧的灵魂"

Agenda

- Intro of the progress of ETSI ISG ENI
- Intro of the progress of MEF
- One typical use case: network data use case for wavelength division service draft-ding-nmrg-wavelength-use-case-00

ETSI ENI - a Standards Group Network Focusing on Network Intelligence Established in 2017Q1

(Experiential Networked Intelligence)

The core idea of network intelligence defined by ENI: **Network perception analysis, data-driven policy, AI based closed-loop control**

17Q1: ETSI ISG ENI (Experiential Networked Intelligence)

- decisions.
- orient-decide-act' control loop model.
- offered based on changes in user needs, environmental conditions and business goals.

Phase 1 focus on use case & requirements, phase function & architecture. 4 meetings per year: Q3 (hosted by CT), Q4 - UK (hosted by Samsung

The ISG ENI focuses on improving the operator experience, adding closed-loop artificial intelligence mechanisms based on contextaware, metadata-driven policies to more quickly recognize and incorporate new and changed knowledge, and hence, make actionable

In particular, ENI will specify a set of use cases, and the architecture, for a network supervisory assistant system based on the 'observe-

This model can assist decision-making systems, such as network control and management systems, to adjust services and resources

2 design - Beijing ng)		and Asia. As ENI wa	g operators and vendor s founded this year, so n their internal progress
		Role	Company
ne		Chairman	Huawei (Dr. Raymond F
are dynamic gement		Vice Chairman	China Telecom (Haini
Group mative		Second Vice Chairman	Verizon (Dr. Farid Feisu
ns based		Technical Officer	ETSI (Sylwia Korycinska)
		Technical Manager	Huawei (Dr. Shucheng I
		Other Main Players	Samsung, PT, SKT, Char Xilinx, Layer123, WING CATR, Convida, Meador

ETSI ENI Work-items

ENI Use Cases – ENI-00

Early draft: May 2017

4 Use cases to date

- Stable draft: December 2017
- Oraft for approval: February 2018

Contact Details:

Yue Wang

(Samsung R&D UK)

yue2.wang@samsung.com

ENI Requirements – ENI-002

- Early draft: May 2017
- Stable draft: December 2017
- Oraft for approval: February 2018

Haining Wang

Contact Details:

(China Telecommunications)

wanghn.bri@chinatelecom.cn

ENI Terminology – ENI-004

Early draft: September 2017

Stable draft: December 2017

Oraft for approval: February 2018

Contact Details:

Yu Zeng

(China Telecommunications)

zengyu.bri@chinatelecom.cn

ENI Architecture GS – ENI-005

- Early draft: February 2018
- Stable draft: February 2019
- Oraft for approval: March 2019
 - To be agreed

Contact Details:

To be confirmed (Verizon tbc) ETSI Supporters: Verizon, Huawei, ZTE, China

Telecommunications, Portugal Telecoms.

ENI Use Case: Summary Proposed by Operators & Vendors

Use case

Policy-driven IDC traffic steering Awareness of Dedicated Resources with Network Slicing Policy-driven IP managed networks Radio Coverage and capacity optimization Intelligent Software Rollouts Policy-based network slicing for IoT security Context aware VoLTE service experience optimization Intelligent network slicing management Intelligent carrier-managed SD-WAN **Dynamic Service Prioritization and Resource Sharing Infrastructures** Network fault prediction Fault localization and diagnosis

14+ Use cases summarized in 3 categories: resource management and optimization, service experience optimization and assurance, fault detection and prediction

ENI Ecosystem

- Asia have joined ENI
- IETF, BBF, MEF, ETSI NFV / NGP / MEC / NTECH, etc consensus of evolution of intelligence in the network

Network Intelligence standard and industry layout

 ETSI ENI - Concept, use case and requirement, framework IETF / 3GPP - Protocol / data model / architecture ITU-T / MEF - Big data / policy •BBF / GSMA - Fixed/Mobile international industrial development •SDNIA AIAN - China - Asia industry alliance

Cooperate with industry mainstream players - operators and vendors from Europe, US and

Work with other SDOs and industry development organization - Liaisons exchanged with ETSI ENI as the home/core of intelligent network standards - guiding the industry on the

Future evolution of network intelligence

Automatic: refers to the automation of service distribution, network deployment and maintenance, through the integration of network management and control unit, to achieve automation of service distribution processes Adaptive: refers to the further introduction of intelligent analysis unit based on the first stage, real-time acquisition of network data, perception of network status, based on service and network SLA promised to generate optimization strategies to enable the network from open-loop configuration to closed-loop optimization Autonomous (self-decision) - Long-term exploration: To further enhance the "intelligence" level of the unit of analysis, introduce artificial intelligence and machine learning algorithms to make the network self-learning ability, evolve from a given static strategy to a dynamic strategy based on self-realize and learn network autonomy.

From "Network, All Intelligent." speech from Mr. Wang Tao in UBBF.

Next Steps

- All ICT Industry companies are welcome to join us!
- **Online meetings every week, 20+meetings already held**
 - https://portal.etsi.org/tb.aspx?tbid=857&SubTB=857#5069-meetings

Date	Meeting	Location
14 Nov	Rapporteur's call#27: Terminology TBC	Online
21 Nov	Rapporteur's call#28: Requirements&Terminology	Online
21 Nov	Rapporteur's call#29: Use cases	Online
22 Nov	Rapporteur's call#30: Context Aware Policy Modelling	Online
28 Nov	Rapporteur's call#31: Context Aware Policy Modelling	Online
28 Nov	Rapporteur's call#32: Requirements&Terminology	Online
11-13 Dec	<u>ENI#4</u>	Staines GB
14 Dec	ENI workshop	Staines GB
05-08 Mar	<u>ENI#5</u>	Sophia Antipolis FR
14-17 May	<u>ENI#6</u>	Sophia Antipolis FR

- **Next F2F meeting:**
 - ENI#04 meeting will be held in Staines, UK, on 11-13 Dec.
 - Meetings in 2018 planned

Need to cooperate with many SDO and Technical bodies within ETSI

Agenda

- Intro of the progress of ETSI ISG ENI
- Intro of the progress of MEF
- One typical use case: network data use case for

wavelength division service

- draft-ding-nmrg-wavelength-use-case-00

MEF Policy Summary

- Comprehensive Info Model Defined
 - Extension of IETF SUPA Framework
 - Defines declarative and intent policies in addition to imperative policies
- Info Model Used as a Grammar Syntax and semantics used to define APIs and DSLs
- Three DSLs with Mappings between Each Block-structured, keyword-based Imperative: Declarative: FOL-based
 - Natural language Intent:

How Do Different Constituencies Interact?

Constituencies: The Policy Continuum and Intent

Generic Observations About Policy

- A Policy is typically NOT thought of as the ACL itself
- For North-South, or hierarchies in general: – Policies *manage* behavior
- For East-West:
 - Policies *negotiate* (e.g., request and offer, but not *control*) behavior
- - Context selects policies based on applicability
 - Capabilities describe what the policy does

• A Policy could be used to build and modify ACLs (access control lists)

• How we can build a common abstraction for these two different policies?

- Policies are selected based on a 3-tuple: {Context, Capabilities, Constraints} – Metadata can be used to describe and prescribe each of the elements in the above 3-tuple

- Constraints restrict the capabilities offered and/or the behavior of the policy

Agenda

- Intro of the progress of ETSI ISG ENI
- Intro of the progress of MEF
- One typical use case: network data use case for wavelength division service draft-ding-nmrg-wavelength-use-case-00

Background, Motivation and Goal

Background:

- Wavelength-division multiplexing (WDM)
- WDM system
- wavelength division network data

Motivation:

• Goal:

- wavelength division service.
- division service.
- present the existing problem of learning network data

Traditional passive strategy is inefficient, and easily leads to long service interruption. Statistical characteristics of network data can help operator to judge the time point at which the service is abnormal or normal, or the service is risky or healthy.

illustrate the requirements of network data used to evaluate the performance of

demonstrate the different application scenarios of network data in wavelength

Characteristics of network data

 Network data is a series of data points indexed in time order. It taken over time may have an internal structure (such as, trend, seasonal variation, or outliers).

- Subject
- **Measured values**
- Timestamp

Timestamp

Network data mainly consists several major characteristics:

cluster	hostname	cpu	iops	
Cluster-A	host-a	10	10	
Cluster-A	host-b	20	30	
Cluster-A	host-a	5	8	
			Y	
Subject		Measured va		

Use cases

Anomaly detection:

- expected pattern or other items in data
- to keep track of wavelength division service over time

• Risk assessment:

- should be examined to score a KPI;.
- of these KPI scores.

anomaly detection: is the identification of items, events or observations which do not conform to an

Network data: FEC_bef, input optical power, laser bias current and other key factors can be selected

Single KPI scoring: The scoring strategy for single KPI. In this case, different dimensions of a KPI

Multi-KPI scoring: The scoring strategy for assessing the network risk using values of many KPIs. If a device or a service is monitored by several key KPIs, the risk should be analyzed by the integration

2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00	r1 r10 r100 r1000 r1001 r1002 r1003 r1004 r1005 r1006 r1007 r1008	befjitterscore 50.0073 100 100 100 83.0047 77.2716 100 100 100	87.7848 100 100 100 85.7769 100 100 100	befthresholdscore 12.5 100 100 100 100 37.5 25 100
2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00	r100 r1000 r1001 r1002 r1003 r1004 r1005 r1006 r1007	100 100 83.0047 77.2716 100 100	100 100 100 85.7769 100 100	100 100 100 37.5 25 100
2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00	r1000 r1001 r1002 r1003 r1004 r1005 r1006 r1007	100 100 83.0047 77.2716 100 100	100 100 85.7769 100 100	100 100 37.5 25 100
2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00	r1001 r1002 r1003 r1004 r1005 r1006 r1007	100 83.0047 77.2716 100 100	100 85.7769 100 100	100 37.5 25 100
2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00	r1002 r1003 r1004 r1005 r1006 r1007	83.0047 77.2716 100 100	85.7769 100 100	37.5 25 100
2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00	r1003 r1004 r1005 r1006 r1007	77.2716 100 100	100 100	25
2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00	r1004 r1005 r1006 r1007	100 100	100	100
2017-07-01 00:00:00 2017-07-01 00:00:00 2017-07-01 00:00:00	r1005 r1006 r1007	100		
2017-07-01 00:00:00 2017-07-01 00:00:00	r1006 r1007		100	
2017-07-01 00:00:00	r1007	100		100
			100	100
2017-07-01 00:00:00	r1008	100	90.3659	12.5
		79.8173	87.1236	(
2017-07-01 00:00:00	r1009	87.3081	95,2853	12.5
2017-07-01 00:00:00	r101	100	100	12.5
2017-07-01 00:00:00	r1010	100	100	100
2017-07-01 00:00:00	r1011	100	100	100
2017-07-01 00:00:00	r1012	100	100	100
2017-07-01 00:00:00	r1013	100	100	100
2017-07-01 00:00:00	r1014	100	100	100
2017-07-01 00:00:00	r1015	34.575	100	100
2017-07-01 00:00:00	r1016	100	100	100
2017-07-01 00:00:00	r1017	100	100	100
2017-07-01 00:00:00	r1018	100	100	100
2017-07-01 00:00:00	r1019	100	100	100
2017-07-01 00:00:00	r102	100	99.8157	12.5
2017-07-01 00:00:00	r1020	84.8477	100	100
2017-07-01 00:00:00	r1021	71.1991	100	100
2017-07-01 00:00:00	r1022	100	99.9679	0
2017-07-01 00:00:00	r1023	100	100	
2017-07-01 00:00:00	r1024	100	100	100
2017-07-01 00:00:00	r1025	100	100	100
2017-07-01 00:00:00	r1026	100	100	100
2017-07-01 00:00:00	r1027	100	100	100
2017-07-01 00:00:00	r1028	81.1454	87.5456	37.5
2017-07-01 00:00:00	r1029	34.575	87.3236	62.5
2017-07-01 00:00:00	r103	100	100	100

	🤌 time	🤌 rid	befjitterscore	befdeviationscore	befthresholdscore	befscore
	2017-07-01 00:00:00	r1	50.0073	87.7848	12.5	55.768
	2017-07-01 00:00:00	r10	100	100	100	100
	2017-07-01 00:00:00	r100	100	100	100	100
	2017-07-01 00:00:00	r1000	100	100	100	10
	2017-07-01 00:00:00	r1001	100	100	100	10
	2017-07-01 00:00:00	r1002	83.0047	85.7769	37.5	68.464
	2017-07-01 00:00:00	r1003	77.2716	100	25	70.340
	2017-07-01 00:00:00	r1004	100	100	100	10
	2017-07-01 00:00:00	r1005	100	100	100	10
	2017-07-01 00:00:00	r1006	100	100	100	10
	2017-07-01 00:00:00	r1007	100	90.3659	12.5	64.55
	2017-07-01 00:00:00	r1008	79.8173	87.1236	0	55.534
	2017-07-01 00:00:00	r1009	87.3081	95.2853	12.5	65.113
veighting	2017-07-01 00:00:00	r101	100	100	12.5	69.37
weighting	2017-07-01 00:00:00	r1010	100	100	100	10
	2017-07-01 00:00:00	r1011	100	100	100	10
	2017-07-01 00:00:00	r1012	100	100	100	10
	2017-07-01 00:00:00	r1013	100	100	100	10
	2017-07-01 00:00:00	r1014	100	100	100	10
	2017-07-01 00:00:00	r1015	34.575	100	100	90.186
	2017-07-01 00:00:00	r1016	100	100	100	10
	2017-07-01 00:00:00	r1017	100	100	100	10
	2017-07-01 00:00:00	r1018	100	100	100	10
	2017-07-01 00:00:00	r1019	100	100	100	10
	2017-07-01 00:00:00	r102	100	99.8157	12.5	69.282
	2017-07-01 00:00:00	r1020	84.8477	100	100	97.727
	2017-07-01 00:00:00	r1021	71,1991	100	100	95.679
	2017-07-01 00:00:00	r1022	100	99.9679	0	64.98
	2017-07-01 00:00:00	r1023	100	100	0	6
	2017-07-01 00:00:00	r1024	100	100	100	10
	2017-07-01 00:00:00	r1025	100	100	100	10
	2017-07-01 00:00:00	r1026	100	100	100	10
	2017-07-01 00:00:00	r1027	100	100	100	10
	2017-07-01 00:00:00	r1028	81.1454	87.5456	37.5	69.069
	2017-07-01 00:00:00	r1029	34.575	87.3236	62.5	70.723
	2017-07-01 00:00:00	r103	100	100	100	10
	2017-07-01 00:00:00	r1030	100	100	37.5	78.12

Single KPI scoring

Multi - KPI

Multi - KPI scoring

🤌 time	🤌 rid	aftcorrected	befscore	finalscore
2017-07-01 00:00:00	r1	0	55.7685	69.0379
2017-07-01 00:00:00	r10	0	100	100
2017-07-01 00:00:00	r100	0	100	100
2017-07-01 00:00:00	r1000	0	100	100
2017-07-01 00:00:00	r1001	0	100	100
2017-07-01 00:00:00	r1002	0	68.4641	77.9249
2017-07-01 00:00:00	r1003	0	70.3407	79.238
2017-07-01 00:00:00	r1004	0	100	100
2017-07-01 00:00:00	r1005	0	100	100
2017-07-01 00:00:00	r1006	0	100	100
2017-07-01 00:00:00	r1007	0	64.558	75.190
2017-07-01 00:00:00	r1008	0	55.5344	68.874
2017-07-01 00:00:00	r1009	0	65.1139	75.579
2017-07-01 00:00:00	r101	0	69.375	78.562
2017-07-01 00:00:00	r1010	0	100	10
2017-07-01 00:00:00	r1011	0	100	10
2017-07-01 00:00:00	r1012	0	100	10
2017-07-01 00:00:00	r1013	0	100	10
2017-07-01 00:00:00	r1014	0	100	10
2017-07-01 00:00:00	r1015	0	90.1862	93.130
2017-07-01 00:00:00	r1016	0	100	10
2017-07-01 00:00:00	r1017	0	100	10
2017-07-01 00:00:00	r1018	0	100	10
2017-07-01 00:00:00	r1019	0	100	10
2017-07-01 00:00:00	r102	0	69.2828	78.49
2017-07-01 00:00:00	r1020	0	97.7272	98.40
2017-07-01 00:00:00	r1021	0	95.6799	96.975
2017-07-01 00:00:00	r1022	0	64.984	75.488
2017-07-01 00:00:00	r1023	0	65	75.
2017-07-01 00:00:00	r1024	0	100	10
2017-07-01 00:00:00	r1025	0	100	10
2017-07-01 00:00:00	r1026	0	100	10
2017-07-01 00:00:00	r1027	0	100	10
2017-07-01 00:00:00	r1028	0	69.0696	78.348
2017-07-01 00:00:00	r1029	0	70.7231	79.506
2017-07-01 00:00:00	r103	0	100	10
2017-07-01 00:00:00	r1030	0	78.125	84.687

Open issues

- Merge data from different time periods?

□ For example, for a multi- domain deployment service, there are many different collection periods for network devices, such as 30s, 5min, 15min, and so on. □ How these data sets are stored and assessed with high efficiency?

Thank you!

Backup slides

ThinkNET: Demo the idea of network intelligence

Sub-Demo A: Imperative policy

Imperative policy: ECA Close loop control based on predefined policy

overall intelligent control mechanism on the whole process

Sub-Demo C: intelligent resource mngt

- **Centrally controlled** address management
- **Real-time collect &** analyze data, adjust resource based on that without manual configuration
- Improve IP address utilization and reduce **OPEX**

Sub-Demo B: Declarative policy

Control

Intent based API

The system automatically generates the solution according to the intent and status of network

Sub-Demo D: Intelligent service deployment

Simplify the manual

configuration

Based on service model

Orchestrator

implements the network

configuration details

ce	
Ce la	
e Intent API	
chestrator	
guage MDE	
ormation APIs	
position and	
ement	
e Delivery API	
ontroller	
rce Management API	
twork Network ment Llement	

ENI Standards for Experiential Networked Intelligence Improving Experience

Intelligent Analyzing and Prediction

- Network analyzing
- Utilization/inventory Prediction
- Fault Prediction

Intelligent Monitoring

- SDN Telemetry
- Network event & state collection
- Network performance collection

Intelligent Service Deployment

 Intent based service management Service mapping • Service atom

Intelligent Policy Control

- Imperative policy
- Declarative policy
- Policy driven service/resource management

Intelligent Resource Management

- On-demand resource allocation
- 3rd party resource API
- Intent based resource management