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Model-free Resource Management with Reinforcement Learning
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Accelerated Reinforcement Learning for model-agnostic resource management at scale
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Reinforcement Learning: Q-learning approach
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Experimental results

Automatically derive control decisions that maximize system efficiency Return: Sum of discounted rewards
Minimal system information (state and reward) with no system model R’zzz"yt r
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Experimental results (cont’d)

Maximize system efficiency in a changing environment

Fit a system model and analytically derive “optimal” policies which maximize the current reward
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Introduce a system change which invalidates the system model

- CPU limitation, network bandwidth limitation, etc.
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Conclusions

Principles for state and reward definition:
* Collect relevant system feedback by separating causes from effects (<workload, capacity> => response time),
* Design a meaningful reward, e.g. reward = revenue — cost, return = log term profit

Automatic derivation and adaptation of control policies
* Development of a simulator for speeding-up the tests (x104) and validation within a real Cloud infrastructure
* Demonstrating that RL derived policies beat a system model based approach under changing infrastructure conditions

Open Challenges

* Unknown reward latency

e Failed actions

* Slow convergence (“cold-start”)

* Abnormal environment changes / failures

Understand strength and challenges of Reinforcement Learning for Resource Management
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System model fitting and derivation of optimal policies
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