

Model-free resource management with **Reinforcement Learning**

Yue JIN, Makram BOUZID, Dimitre KOSTADINOV, and <u>Armen AGHASARYAN</u> Causal Data Analytics department Bell Labs, Paris

1 © 2017 Nokia

Nokia Internal Use

Model-free Resource Management with Reinforcement Learning

Management and Control in Hyper-connected society

The digital system of the future will face the growing challenge of controlling the system behavior in complex dynamically evolving environments

Learning in interaction

Live interaction with a partially observed system to provide it with autonomous management capabilities

Model-free management of Cloud resources

Automated control of Cloud-based applications using a model-free Reinforcement Learning approach

Accelerated Reinforcement Learning for model-agnostic resource management at scale

Reinforcement Learning: Q-learning approach

Automatically learn optimal resource management policies with limited prior information and adapt automatically to changes

Applied to an elastic cloud-based application

[Workkload;;Capadity(#WMs)]

Reward number in the initial isotropy of the set of

State s:

Experimental results

Automatically derive control decisions that maximize system efficiency

Minimal system information (state and reward) with no system model

Trade off between minimizing allocated capacity and maximizing customer responsiveness

(Response time - SLA, O) Reprint 41-Capacity Ky man (Rosponse time = 564,0)} :

Convergence of the averaged return (system efficiency)

NOKIA

4000

Iteration

6000

8000

2000

Workloa

Capacity : # VMs

4 © 2017 Nokia

30.0

27.5

25.0

22.5

20.0 17.5

15.0 12.5

10.0

Experimental results (cont'd)

Maximize system efficiency in a changing environment

Fit a system model and analytically derive "optimal" policies which maximize the current reward

Introduce a system change which invalidates the system model

- CPU limitation, network bandwidth limitation, etc.

Conclusions

Principles for state and reward definition:

- Collect relevant system feedback by separating causes from effects (<workload, capacity> => response time),
- Design a meaningful reward, e.g. reward = revenue cost, return = log term profit

Automatic derivation and adaptation of control policies

- Development of a simulator for speeding-up the tests (x10⁴) and validation within a real Cloud infrastructure
- Demonstrating that RL derived policies beat a system model based approach under changing infrastructure conditions

Open Challenges

- Unknown reward latency
- Failed actions
- Slow convergence ("cold-start")
- Abnormal environment changes / failures

Understand strength and challenges of Reinforcement Learning for Resource Management

System model fitting and derivation of optimal policies

Derive the system's input-eutout behavior (Workland us Researched ima)

• Fit is linear model for a signer system capacity N_{VM}

 $RT(\mathcal{M}_{\mathcal{M}}) = \beta_{\mathcal{O},\mathcal{M}_{\mathcal{M}}} + \beta_{\mathcal{O},\mathcal{M}_{\mathcal{M}}} \cdot \mathcal{M} \mathcal{I}_{\mathcal{O}}$

• Then, deleve scaling policies that maximize the current the operical

