NTP Interleaved Modes

draft-mlichvar-ntp-interleaved-modes-00
Miroslav Lichvar1, Aanchal Malhotra2
Red Hat1, Boston University2
Transmit timestamp (Tx)

- Tx can be captured:
 - NTP daemon
 - Network drivers
 - MAC layer (OSI)
 - PHY layer (OSI)
- in basic mode (RFC 5905), Tx captured at NTP daemon
- includes errors - processing and queuing delays.

NTP packet
For more accuracy

• Tx should be captured close to the wire, ideally at PHY layer

• difficult to implement in current packet

• RFC 5905 provides no specification for server to provide this more accurate Tx to clients/peers
Interleaved mode

- NTP packet contains a Tx corresponding to the previous packet sent to the client or peer.
- This draft formally specifies:
 - A new interleaved client/server mode.
 - Interleaved symmetric mode with some modifications to NTP reference implementation.
 - Interleaved broadcast mode based purely on NTP reference implementation.
Interleaved client/server mode

basic client/server mode

interleaved client/server mode
Interleaved client/server mode

Server state:
• for client: \((Rx, Tx)=(T2, T3)\)
• upon getting request:
 check if \(T2=?Rx\)

Client state:
• upon getting response:
 perform all tests as in RFC 5905
 &
 check if \(T4=?Rx\)
Interleaved client/server mode

Server:
- T2
- T3
- T6
- T7
- T10
- T11

Client:
- T1
- T4
- T5
- T8
- T9
- T12

Mode:
- Basic
- Interleaved

org
Rx
Tx
- 0
- 0
- T1
- T2
- T3
- T1
- T4
- T2
- T1
- T3
- T4
- T6
- T5
- T6
- T8
- T5
- T10
- T11
Interleaved symmetric mode

- Similar to interleaved client/server mode.
- Modification from NTP reference implementation.
 - Additional restrictions to deal with:
 - unequal peer polling interval
 - packet loss
Interleaved broadcast mode

Based purely on NTP reference implementation.