QUIC FEC

Approaches and APIs <u>draft-quic-coding-00</u> Ian Swett, NWCRG@IETF100

QUIC Header

- 1 byte for 'type'
- 8 byte Connection ID
- 1, 2 or 4 byte packet number

Short Header Packets (optimized for packets encrypted with TLS 1-RTT key)

Why FEC in QUIC?

- We can!
- Realtime Communications
- QUIC Tunnels
- Multicast QUIC(someday)
- Efficient Tail Loss Probe

QUIC features which may help

QUIC has a monotonically increasing packet number

Multiple QUIC flows can share a 5-tuple by using different connection IDs

QUIC provides multiplexed streams which do not block one another

Option 1: FEC outside the crypto

Use a second QUIC connection ID

Pros:

- Can code within the network without end-to-end coordination
- Can use QUIC packet numbers to indicate what is protected
- Does not change the core sequence of QUIC packets

Cons:

- Network visibility into the FEC
- May need FEC 'termination' separate from end-to-end
- More difficult to integrate with QUIC's congestion control

Option 2: FEC within the encrypted payload

Define a new frame type for FEC data and how it protects adjacent packets

Pros:

• No network visibility into the FEC (end-to-end encryption)

Cons:

- CPU cost of coding and encryption
- Consumes a byte to indicate the rest of the packet is coding

Option 3: FEC in the crypto as a stream

Use one or more QUIC streams to send FEC

Pros:

- May work well with existing applications using FEC(ie: RTP)
- Can implement without transport changes

Cons:

- Application specific
- May increase overhead vs packet based coding
- Can't leverage QUIC packet numbers

Opinion: Option 2 seems promising

Relatively easy to negotiate a new frame in QUIC in the handshake

Should work well with a variety of codes

Crypto is fairly cheap, so coding and crypto is likely a non-problem

Not Observable*

API thoughts

Configuration

- 1. Know how much overhead FEC needs
- 2. Is coding rate is dynamic?
- 3. Can I send data and then coded bytes or only coded bytes?
- 4. Set coding rate
- 5. Set coding length

Runtime

- 1. Add data to be protected
- 2. Request coded bytes to be sent

Challenges and Questions

FEC adds a small amount of overhead

• Solution: Don't use the full packet size for non-FEC packets?

=> Need to know the max overhead FEC can add

Ensure the generated code will protect missing packets

• ie: I lost 2 packets one RTT ago and only sent one coded packet, can I generate coded content to recover them now?

Does the API need to understand packet numbers or is there a QUIC specific 'shim' to interface with a standard API and provide framing?

QUIC Implementations

Want to experiment?

QUIC implementations:

https://github.com/quicwg/base-drafts/wiki/Implementations