draft-ietf-oauth-security-topics Status

John Bradley, Andrey Labunets, Torsten Lodderstedt

Nov 15 2017, Singapore

What is it?

- Comprehensive overview on open OAuth security topics
- Systematically captures and discusses these security topics and respective mitigations
- Recommends best current practice and OAuth changes & extensions

Structure

$\underline{1}$. Introduction	•	3
$\underline{2}$. Best Practices		4
2.1. Protecting redirect-based flows	•	3 4 4 5 5 5 5 6 7 8 9
2.2. Token Leakage Prevention	•	<u>5</u>
3. Recommended Changes to OAuth		<u>5</u>
$\underline{4}$. Attacks and Mitigations		<u>5</u>
4.1. Insufficient redirect URI validation		<u>5</u>
4.1.1. Attacks on Authorization Code Grant		<u>6</u>
4.1.2. Attacks on Implicit Grant		7
4.1.3. Proposed Countermeasures		8
4.2. Authorization code leakage via referrer headers		
<u>4.2.1</u> . Proposed Countermeasures		
4.3. Attacks in the Browser		100000000000000000000000000000000000000
$\underline{4.3.1}$. Code in browser history (TBD)		
4.3.2. Access token in browser history (TBD)		
4.3.3. Javascript Code stealing Access Tokens (TBD)		
4.4. Mix-Up		
4.5. Code Injection		
4.5.1. Proposed Countermeasures		
4.6. XSRF (TBD)		
4.7. Access Token Leakage at the Resource Server		
4.7.1. Access Token Phishing by Counterfeit Resource Serve		
<u>4.7.1.1</u> . Metadata		
4.7.1.2. Sender Constrained Access Tokens		
4.7.1.3. Audience Restricted Access Tokens		
4.7.2. Compromised Resource Server		
4.8. Refresh Token Leakage (TBD)		
4.9. Open Redirection (TBD)		
4.10. TLS Terminating Reverse Proxies	•	22

Recommendations

Threat Analysis and Discussion of Counter Measures

Recommended Best Practices

- Exact redirect URI matching at AS (token leakage, mix-up)
- Avoid any redirects or forwards, which can be parameterized by URI query parameters (open redirection, token/code leakage)
- One-time use tokens carried in the STATE parameter for XSRF prevention
- AS-specific redirect URIs (mix-up)
- Clients shall use PKCE in order to detect code injection
- Authorization servers shall use TLS-based methods for sender constraint access tokens
- Use end-to-end TLS whenever possible

Recommended Changes to OAuth

Remove requirement to check actual redirect URI at token endpoint (RFC 6749, Section 4.3.1)

"ensure that the "redirect_uri" parameter is present if the "redirect_uri" parameter was included in the initial authorization request ... and if included ensure that their values are identical."

- Objective: prevent client impersonation/code injection
- Challenges:
 - o seems to complicated to implement properly and requires transaction specific state
 - Some implementations short cut be just pattern matching against client policy
- protection goal is achieved more effective by utilizing PKCE as recommended

Status

- Published revisions -03 & -04
- Added text on token leakage at the resource server based on discussions in Prague
 - Additional Metadata
 - Audience Restriction
 - Sender Constraint Access Tokens
- Added text on threats associated with use of TLS Terminating Reverse Proxies
- Based on feedback in Prague, added recommendation to use sender constraint access tokens as prefered countermeasure against token leakage
- Restructured BCP

Please give us feedback!