Network Data Use Case for Wavelength Division Service

draft-ding-opsawg-wavelength-use-case-00

Xiaojian Ding, Will Liu (Huawei Technologies) Chen Li (China Telecom)

service

- Wavelength-division multiplexing (WDM)
- WDM system
- wavelength division network data

Motivation and Goal

• Traditional passive strategy is inefficient, and easily leads to long service interruption.

• Statistical characteristics of network data can help operator to judge the time point at which the service is abnormal or normal, or the service is risky or healthy

Goal:

• illustrate the requirements of network data used to evaluate the performance of wavelength division service.

 demonstrate the different application scenarios of network data in wavelength division service.

present the existing problem of learning network data

Terminologies

KPI: Key Performance Indicator.

Network KPI represents the operational state of a network device, link or network protocol in the network. KPI data is usually represented to users as a set of time series (e.g., KPI = x_i , i=1..t), each time series is corresponding to one network KPI indicator value at different time point during specific time period.

data

- Network data is a series of data points indexed in time order. It taken over time may have an internal structure (such as, trend, seasonal variation, or outliers).
- Network data mainly consists several major characteristics:
 - O Subject
 - O Measured values
 - ⁰ Timestamp

timestamp	cluster	hostname	сри	iops		
2015-04-28T17:50:00Z	Cluster-A	host-a	10	10		
2015-04-28T17:50:10Z	Cluster-A	host-b	20	30		
2015-04-28T17:50:20Z	Cluster-A	host-a	5	8		
[] 			γ			
Timestamp	Sub	ject	Measured values			

Use cases

- Anomaly detection
 - Network data: FEC_bef, input optical power, laser bias current and other key factors can be selected to keep track of wavelength division service over time

	+		+	+-		-+	+-		+	+-		-+
	1	Network	1	I.	feature	1	I.	anomaly	1	I.	raise	I.
	I.	data	+>	۶I	selection	n+>	>	detection	+>	· I	alarm	I.
Risk asses	+		+	+-		-+	+-		+	+-		-+

- O Single KPI scoring: The scoring strategy for single KPI. In this case, different dimensions of a KPI should be examined to score a KPI;.
- Multi-KPI scoring: The scoring strategy for assessing the network risk using values of many KPIs. If a device or a service is monitored by several key KPIs, the risk should be analyzed by the integration of these KPI scores.

۲

(1)

- Single KPI scoring, different dimensions of a KPI were examined: fluctuation, trend, threshold, etc.
 - O Fluctuation analysis
 - Trend analysis
 - Threshold analysis

 Surgie in i

(2)

• FEC_bef KPI scoring

FEC_score (5×169,2	236)										
🔑 time	🔑 rid	befjitterscore	befdeviationscore	befthresholdscore		/ EFEC_score (6×169,2	236) \	1.000	1.61.5.8	1.01.1.1	1.6
2017-07-01 00:00:00	r1	50.0073	87.7848	12.5		> time	🤌 rid	Detjitterscore	betdeviationscore	befthresholdscore	betscore
2017-07-01 00:00:00	r10	100	100	100		2017-07-01 00:00:00	r1	50.0073	87.7848	12.5	55.7685
2017-07-01 00:00:00	r100	100	100	100		2017-07-01 00:00:00	P10	100	100	100	100
2017-07-01 00:00:00	r1000	100	100	100		2017-07-01 00:00:00	r100	100	100	100	100
2017-07-01 00:00:00	r1001	100	100	100		2017-07-01 00:00:00	r1000	100	100	100	100
2017-07-01 00:00:00	r1002	83.0047	85.7769	37.5		2017-07-01 00:00:00	r1001	100	100	100	100
2017-07-01 00:00:00	r1003	77.2716	100	25		2017-07-01 00:00:00	r1002	83.0047	85.7769	37.5	68.4641
2017-07-01 00:00:00	r1004	100	100	100		2017-07-01 00:00:00	r1003	77.2716	100	25	70.3407
2017-07-01 00:00:00	r1005	100	100	100		2017-07-01 00:00:00	r1004	100	100	100	100
2017-07-01 00:00:00	r1006	100	100	100		2017-07-01 00:00:00	r1005	100	100	100	100
2017-07-01 00:00:00	r1007	100	90.3659	12.5		2017-07-01 00:00:00	r1006	100	100	100	100
2017-07-01 00:00:00	r1008	79.8173	87.1236	0		2017-07-01 00:00:00	r1007	100	90.3659	12.5	64.558
2017-07-01 00:00:00	r1009	87.3081	95.2853	12.5		2017-07-01 00:00:00	r1008	79.8173	87.1236	0	55.5344
2017-07-01 00:00:00	r101	100	100	12.5		2017-07-01 00:00:00	r1009	87.3081	95.2853	12.5	65.1139
2017-07-01 00:00:00	r1010	100	100	100	1 A 4 4 4 4	2017-07-01 00:00:00	r101	100	100	12.5	69.375
2017-07-01 00:00:00	r1011	100	100	100	weighting	2017-07-01 00:00:00	r1010	100	100	100	100
2017-07-01 00:00:00	r1012	100	100	100		2017-07-01 00:00:00	r1011	100	100	100	100
2017-07-01 00:00:00	r1013	100	100	100		2017-07-01 00:00:00	r1012	100	100	100	100
2017-07-01 00:00:00	r1014	100	100	100		2017-07-01 00:00:00	r1013	100	100	100	100
2017-07-01 00:00:00	r1015	34.575	100	100		2017-07-01 00:00:00	r1014	100	100	100	100
2017-07-01 00:00:00	r1016	100	100	100		2017-07-01 00:00:00	r1015	34.575	100	100	90.1862
2017-07-01 00:00:00	r1017	100	100	100		2017-07-01 00:00:00	r1016	100	100	100	100
2017-07-01 00:00:00	r1018	100	100	100		2017-07-01 00:00:00	r1017	100	100	100	100
2017-07-01 00:00:00	r1019	100	100	100		2017-07-01 00:00:00	r1018	100	100	100	100
2017-07-01 00:00:00	r102	100	99.8157	12.5		2017-07-01 00:00:00	r1019	100	100	100	100
2017-07-01 00:00:00	r1020	84.8477	100	100		2017-07-01 00:00:00	r102	100	99.8157	12.5	69.2828
2017-07-01 00:00:00	r1021	71.1991	100	100		2017-07-01 00:00:00	r1020	84.8477	100	100	97.7272
2017-07-01 00:00:00	r1022	100	99.9679	0		2017-07-01 00:00:00	r1021	71.1991	100	100	95.6799
2017-07-01 00:00:00	r1023	100	100	0		2017-07-01 00:00:00	r1022	100	99.9679	0	64.984
2017-07-01 00:00:00	r1024	100	100	100		2017-07-01 00:00:00	r1023	100	100	0	65
2017-07-01 00:00:00	r1025	100	100	100		2017-07-01 00:00:00	r1024	100	100	100	100
2017-07-01 00:00:00	r1026	100	100	100		2017-07-01 00:00:00	r1025	100	100	100	100
2017-07-01 00:00:00	r1027	100	100	100		2017-07-01 00:00:00	r1026	100	100	100	100
2017-07-01 00:00:00	r1028	81.1454	87.5456	37.5		2017-07-01 00:00:00	r1027	100	100	100	100
2017-07-01 00:00:00	r1029	34.575	87.3236	62.5		2017-07-01 00:00:00	r1028	81.1454	87.5456	37.5	69.0696
2017-07-01 00:00:00	r103	100	100	100		2017-07-01 00:00:00	r1029	34.575	87.3236	62.5	70.7231
2017-07-01 00:00:00	r1030	100	100	37.5		2017-07-01 00:00:00	r103	100	100	100	100
						2017-07-01 00:00:00	r1030	100	100	37.5	78 125

Risk assessment – Multi-KPI

Multi-KPI scoring

time	⊘ rid	aftcorrected	befscore	finalscore
2017-07-01 00:00:00	r1	0	55.7685	69.0379
2017-07-01 00:00:00	r10	0	100	100
2017-07-01 00:00:00	r100	0	100	100
2017-07-01 00:00:00	r1000	0	100	100
2017-07-01 00:00:00	r1001	0	100	100
2017-07-01 00:00:00	r1002	0	68.4641	77.9249
2017-07-01 00:00:00	r1003	0	70.3407	79.2385
2017-07-01 00:00:00	r1004	0	100	100
2017-07-01 00:00:00	r1005	0	100	100
2017-07-01 00:00:00	r1006	0	100	100
2017-07-01 00:00:00	r1007	0	64.558	75.1906
2017-07-01 00:00:00	r1008	0	55.5344	68.8741
2017-07-01 00:00:00	r1009	0	65.1139	75.5797
2017-07-01 00:00:00	r101	0	69.375	78,5625
2017-07-01 00:00:00	r1010	0	100	100
2017-07-01 00:00:00	r1011	0	100	100
2017-07-01 00:00:00	r1012	0	100	100
2017-07-01 00:00:00	r1013	0	100	100
2017-07-01 00:00:00	r1014	0	100	100
2017-07-01 00:00:00	r1015	0	90.1862	93,1304
2017-07-01 00:00:00	r1016	0	100	100
2017-07-01 00:00:00	r1017	0	100	100
2017-07-01 00:00:00	r1018	0	100	100
2017-07-01 00:00:00	r1019	0	100	100
2017-07-01 00:00:00	r102	0	69.2828	78,498
2017-07-01 00:00:00	r1020	0	97.7272	98,409
2017-07-01 00:00:00	r1021	0	95.6799	96.9759
2017-07-01 00:00:00	r1022	0	64.984	75.4888
2017-07-01 00:00:00	r1023	0	65	75.5
2017-07-01 00:00:00	r1024	0	100	100
2017-07-01 00:00:00	r1025	0	100	100
2017-07-01 00:00:00	r1026	0	100	100
2017-07-01 00:00:00	r1027	0	100	100
2017-07-01 00:00:00	r1028	0	69.0696	78.3487
2017-07-01 00:00:00	r1029	0	70.7231	79.5061
2017-07-01 00:00:00	r103	0	100	100
2017-07-01 00:00:00	r1030	0	78,125	84.6875

- Merge data from different time periods?
- For example, for a multi- domain deployment service, there are many different collection periods for network devices, such as 30s, 5min, 15min, and so on.
- o how these data sets are stored and assessed with high efficiency?

Q&A (and Tomato⁽²⁾)

THANK YOU