Interfaces for Path Selection
Laurent Chuat, ETH Zurich

IETF 100, Singapore, Path-Aware Networking Proposed RG (PANRG),
16 November 2017
Parallelism / Redundancy

Goal: improve the reliability, availability, performance, and capacity of computer systems.

Examples:
- Multi-processor systems
- Multi-core CPUs
- Multi-disk (RAID) storage
- [...]
Today's Network Paths

Heterogeneous links

• Optical fiber
• Pair of conductors
• Wireless
 • WiFi (802.11)
 • Cellular (3G, 4G, ...)
 • Personal Hotspot (Bluetooth + Cellular)
Tomorrow's Network Paths

Future networks
- Google's Loon project
- Facebook's Aquila project
- SpaceX's low-orbit satellites project

Future Internet architectures
- SCION
- NEBULA
- NIRA
Multipath TCP (MPTCP)

- Extension of TCP, backward compatible
- Specifically designed to hide multipath communication specificities from the application.
- RFCs 6182, 6824, 6897
Transport Protocols and Application Types

Reliable Transport (TCP) ➔ Multipath TCP (MPTCP)
• Web browsing
• File transfer
• [...]

Unreliable Transport (UDP)
• Request/Response: ➔ Send along: best path / all paths
 • Domain Name System (DNS)
 • [...]
• Real-time communication: ➔ Possibly the most challenging
 • Voice over IP (VoIP)
 • Teleconferencing
 • Gaming
 • [...]

The Berkeley Sockets API

• Introduced in 1983, the Berkley sockets API was a revolution in simplicity.

• But it may be too simplistic for modern applications and networks...

• **Main abstractions:** SOCK_STREAM, SOCK_DGRAM

 • The network is not really a file, and datagrams do not offer much functionality.
What about SOCK_SEQPACKET?

- **Synchronous** (with async event notification)
- **Multipath** (but for *failover* only)
- **No path abstraction**
- Bound to the **Stream Control Transmission Protocol (SCTP)**, not extremely deployable in the open Internet today.
Where Current Models Fall Short: An Example

Goal: deliver as many packets as possible before their *deadline*.

Sending initially the data along the left-hand path and retransmitting lost packets along the right-hand path, we can expect to deliver **100% of the packets** before their deadline.
Network Performance Gain Through Linear Optimization

maximize $p^T \cdot x$
subject to $A \cdot x \leq q,$
$B \cdot x = 1,$
and $x \geq 0$

Deadline-Aware Multipath Communication: An Optimization Problem.
Towards More Powerful Sockets

• Main objective: defining an expressive but simple path-aware socket API that is language, protocol, and architecture independent.

• Main questions:

 • Knobs: What should the application tell the transport layer about its requirements? So that the transport can make appropriate decisions, such as:

 • Packet-to-path assignment

 • Wait/Send/Retransmit/Drop

 • Dials: What should the application be able to learn about the transfer of its messages?
Post Sockets (Trammell et al.)

Goal: transport-, platform-, and language-independent API for present and future transport protocols, which supports dynamic selection of stacks.

- **Multipath** environment
- **Asynchronous** reception
- **Long-lived** associations
- **Message** abstraction
Message Properties

- **Lifetime / Partial Reliability**: period during which the transport protocol should attempt to deliver the message. After this period, the message should be discarded.

- **Priority ("Niceness")**: express which messages should be delivered first.

- **Dependence**: specify whether other messages must be delivered beforehand.

- **Idempotence**: safe to send in situations that may cause the message to be delivered more than once.

- **Immediacy**: do not wait to combine this message with other messages or parts thereof.
TCP (stream) vs. UDP (datagram) is often a false dichotomy.

Partial reliability: packets with a lifetime/deadline may be retransmitted, but only for a limited period. This is particularly useful for real-time communication.

Existing transport protocols:

- Partial Reliability extension of the Stream Control Transmission Protocol (PR-SCTP)
- Deadline-Aware Datacenter TCP (D^2TCP)
Message Properties: Priority ("Niceness")

- **Niceness** is represented by an unbounded non-negative integer and is the inverse of priority.

- By default, \(niceness = 0 \), i.e., the highest priority.

- This inversion has convenient properties:
 - Priority increases as both niceness and lifetime decrease.
 - High priority by default, can be reduced arbitrarily.
Message Properties: Dependence

- A message may have "antecedents", i.e., other messages that must be delivered first.

- Can be combined with lifetime and niceness to determine when to send which message down which path.

- **Example:** A web page should preferably be delivered before embedded media.
Policies

• An application may require, or prefer to use, certain features of the transport protocols. It may also prefer paths/interfaces over others.

• Reasons for defining policies: Cost, Performance, Security/Privacy

• Multiple domains:
 • application policy
 • user policy
 • system policy

• Example 1: WiFi might be preferred over LTE when roaming, due to cost.

• Example 2: An application might require that its messages do not go through certain ASes, for security reasons.
Bad news:
• Optimally assigning packets to paths is a hard problem.

Good news:
• The problem must not necessarily be solved for each packet.
• Not finding the optimal solution does not mean that we cannot find a good solution (with heuristics).
• *A more expressive, unified sockets API could drive and focus new multipath research.*
Questions?

Laurent Chuat, ETH Zurich
(laurent.chuat@inf.ethz.ch)