Ribose

OSCCA Extensions For OpenPGP

draft-ribose-openpgp-oscca

SECDISPATCH, IETF 100 Singapore
16th November 2017

Ronald Tse Wai Kit Wong
Jack Lloyd Daniel Wyatt Erick Borsboom

Why, and how?
- The **Office of State Commercial Cipher Administration (OSCCA)** governs usage of cryptography in China
- Non-approved cryptographic algorithms are **disallowed especially in hardware**
- Only **3 OSCCA-approved** algorithms
 - SM2: ECC (draft-shen-sm2-ecdsa)
 - SM3: Hash (draft-oscca-cfrg-sm3)
 - SM4: Blockcipher (draft-ribose-cfrg-sm4)

This document defines
- Their usage in OpenPGP
 - Public Key Algorithm **SM2**
 - Hash Algorithm **SM3**
 - Symmetric Key Algorithm **SM4**
- An OSCCA-compliant profile
 - "**OSCCA-SM234**" (as an alternative to B-Suite)
SM2 Elliptic Curve Cryptosystem (ECC) (GB/T 32918.{1-5} -2016)

Algorithm
- SM2 is an **ECC that contains 3 algorithms** (DSA, Key Exchange, PKE) and a curve
- **512-bit public key, 256-bit private key**
- See draft-shen-sm2-ecdsa-02
- History
 - 2010 First published by OSCCA
 - 2012 Standardized GM/T 0003-2012
 - 2015 Included in ISO/IEC 11889
 - 2016 Published in GB/T 32918.X-2016
 - 2017 Included in ISO/IEC.14888-3

Application in OpenPGP
- SM2DSA (GB/T 32918.2) as OpenPGP “Public Key Algorithm” (e.g., ECDSA)
- SM2PKE (GB/T 32918.4) as OpenPGP “Public Key Algorithm” (e.g., RSA)
- SM2KEP (GB/T 32918.3) unused – 2/3-pass and vulnerable to MITM
- Adheres to GM/T 0009-2012 (“SM2 Application Specification”) for interop
- Uses “SM2 Recommended” EC (GB/T 32918.5-2017)
- No known feasible attacks today

SM3 Cryptographic Hash Algorithm (GB/T 32905-2016)

Algorithm
- SM3 is a 256-bit digest algorithm
- See: draft-oscca-cfrg-sm3
- Designed by Xiaoyun Wang (SHA-1…)
- Merkel-Damgård, with strengthened step function and message dependency
- History
 - 2010: First published by OSCCA
 - 2012: Standardized GM/T 0004-2012
 - 2016: Published as GB/T 32905-2016
 - 2017: Included in ISO/IEC 10118-3

Application in OpenPGP
- SM3 as an OpenPGP “Hash Algorithm”
- Can be used in conjunction with other public key algorithms, including RSA and SM2
- No known feasible attacks today
- Excellent hardware realization and performance, software performance slightly ahead of SHA-256
SM4 Blockcipher (GB/T 32907-2016)

Algorithm
- SM4 is a **128-bit blockcipher**: 8-bit S-box, 32 rounds
- See [draft-ribose-cfrg-sm4](https://example.com/draft-ribose-cfrg-sm4)
- Designed by Shuwang Lu
- History
 - 2003 in GB 15629.11-2003 (WLAN)
 - 2006 Published as “SMS4” by OSCCA
 - 2012 Standardized GM/T 0002-2012
 - 2016 Published as GB/T 32907-2016
 - 2017 in ISO/IEC 18033-3.AMD2

Application in OpenPGP
- SM4 as an OpenPGP “Symmetric Encryption Algorithm”
- As an alternative to AES-128
- Excellent hardware realization
- No known feasible attacks today, latest attack 24-rounds out of 32
 (always beware of side channels)
Implementation details and moving forward

Available for implementers and users
- SM2/3/4 already available in Botan, OpenSSL. Support in mbedtls / LibreSSL coming.
- Ribose’s RNP [1] OpenPGP tool already supports these algorithms
- To implementers: some additional algorithm-specific fields required as described in document
- No feasible attacks against SM2, SM3, SM4 today

What’s next
- AD-sponsorship needed
- Request codepoints in the IANA PGP registry (RFC8126)
 - SM2: “Public Key Algorithms”
 - SM3: “Hash Algorithms”
 - SM4: “Symmetric Key Algorithms”
- More examples
- Feedback / reviews welcome!

The source of this Internet-Draft can be seen at https://github.com/riboseinc/rfc-openpgp-oscca/

T H A N K Y O U

And… this Internet-Draft was created in AsciiDoc using asciidoctor-rfc. Try it out! https://github.com/riboseinc/asciidoc-rfc/