Alternative Handling of Dynamic Chaining and Service Indirection

Debashish Purkayastha, Dirk Trossen, Akbar Rahman
InterDigital
Z. Despotovic, R. Khalili
Huawei

IETF-100, SFC WG, November 2017
From last meeting

• Service Indirection: dynamic and fast switching of service path between Service Functions

• “SRR service function” handles dynamic indirection
 • Decouples Service Consumer (SC) and Service Providers (SP)
 • Single SC may be connected to multiple SPs through this SRR SF
 • Reclassification may not be required, switches traffic flow to any SPs
 • Based on Instantaneous situation, Policy etc.
HTTP based transport

• Extension to SFC framework
 • Utilize URLs as addressing scheme
 • Create SFPs such as: 192.168.x.x -> www.foo.com -> 192.168.x.x ->
 • This "name-based" relationship that we see possibly realized through
 specific replicated instances, where in turn the routing towards those
 specific instances is realized by the SRR

• Operation in SFC architectural framework
 • Classifier function may interact with SRR to obtain an SE (Service
 Encapsulation).
 • E.g. The Classifier function may look into the network locator map and
 determine the next SF is www.foo.com.
 • This information is provided to SRR to obtain the next hop information.
 • SRR returns the SE for next hop
Details of SRR Service Function (1/2)

- NAP at the ingress, terminates on the client side Layer 3 and above protocols, such as TCP
- NAP at the egress, terminates any transport protocol on the network outgoing (server) side
- PCE, Path Computation Element
 - Select the correct next SF, realizing path policy enforcement.
 - Initial request to a specific URL on the SFP for the first time results in a Path Identifier
 - The Path identifier is utilized for any future request for a given URL-based SF
 - Delivered to the ingress NAP

Contd..
Details of SRR Service Function (2/2)

- Transport-derived SFF (tSFF1): the communication between ingress and egress NAPs as well as NAPs to PCE is realized via a transport-derived SFF.
- Three possible tSFFs
 - SDN-based: utilizes path-based forwarding, using SDN-based wildcard matching fields
 - Realized via a BIER overlay, in turn it is realized over a BIER-compliant underlay, such as MPLS.
 - Utilize a flow aggregation approach, called edge switch classification (ESC)
Protocol Considerations

• Following protocol changes are required:
 • NAP-to-NAP protocol for HTTP: HTTP based message exchange between client and server NAPs
 • NAP-PCE protocol: Used for path computation, obtaining routing information as well as provide path updates
 • Overlay transport protocol: Used for transport-level exchange over any underlay network
 • Registration protocol: Used to register FQDN service endpoints
 • Content certificate distribution protocol: Used for HTTPS support
Next steps

• Collect feedback from the WG
 • Does the use cases and protocol changes proposal look reasonable?

• We will work on this use case and a solution in the H2020 FLAME project with experiments planned for early 2018 and beyond