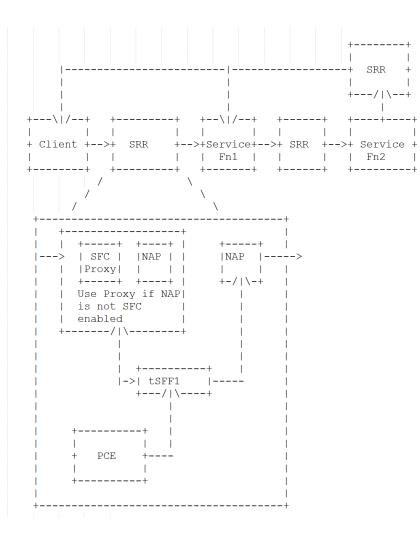


Alternative Handling of Dynamic Chaining and Service Indirection

https://tools.ietf.org/html/draft-purkayastha-sfc-service-indirection-01

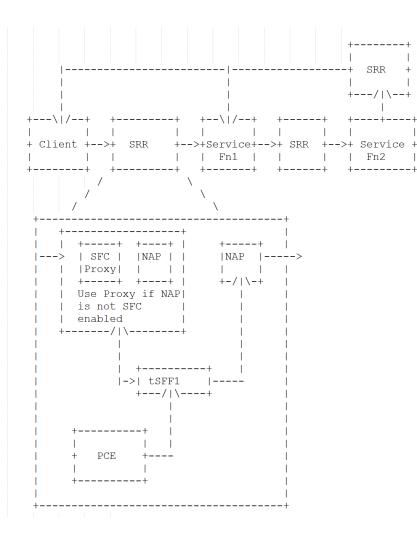
<u>Debashish Purkayastha</u>, Dirk Trossen, Akbar Rahman InterDigital Z. Despotovic, R. Khalili Huawei

IETF-100, SFC WG, November 2017


From last meeting

- Service Indirection: dynamic and fast switching of service path between Service Functions
- "SRR service function" handles dynamic indirection
 - Decouples Service Consumer (SC) and Service Providers (SP)
 - Single SC may be connected to multiple SPs through this SRR SF
 - Reclassification may not be required, switches traffic flow to any SPs
 - Based on Instantaneous situation, Policy etc.

HTTP based transport


- Extension to SFC framework
 - Utilize URLs as addressing scheme
 - Create SFPs such as : 192.168.x.x -> www.foo.com -> 192.168.x.x -> www.foo2.com -> 192.168.x.x -> ... -> www.fooN.com."
 - This "name-based" relationship that we see possibly realized through specific replicated instances, where in turn the routing towards those specific instances is realized by the SRR
- Operation in SFC architectural framework
 - Classifier function may interact with SRR to obtain an SE (Service Encapsulation).
 - E.g. The Classifier function may look into the network locator map and determine the next SF is www.foo.com.
 - This information is provided to SRR to obtain the next hop information.
 - SRR returns the SE for next hop

Details of SRR Service Function (1/2)

- NAP at the ingress, terminates on the client side Layer 3 and above protocols, such as TCP
- NAP at the egress, terminates any transport protocol on the network outgoing (server) side
- PCE, Path Computation Element
 - Select the correct next SF, realizing path policy enforcement.
 - Initial request to a specific URL on the SFP for the first time results in a Path Identifier
 - The Path identifier is utilized for any future request for a given URL-based SF
 - Delivered to the ingress NAP
- Contd..

Details of SRR Service Function (2/2)

- Transport-derived SFF (tSFF1):
 the communication between
 ingress and egress NAPs as
 well as NAPs to PCE is realized
 via a transport-derived SFF.
- Three possible tSFFs
 - SDN-based: utilizes path-based forwarding, using SDN-based wildcard matching fields
 - Realized via a BIER overlay, in turn it is realized over a BIERcompliant underlay, such as MPLS.
 - Utilize a flow aggregation approach, called edge switch classification (ESC)

Protocol Considerations

- Following protocol changes are required:
 - NAP-to-NAP protocol for HTTP: HTTP based message exchange between client and server NAPs
 - NAP-PCE protocol: Used for path computation, obtaining routing information as well as provide path updates
 - Overlay transport protocol: Used for transport-level exchange over any underlay network
 - Registration protocol: Used to register FQDN service endpoints
 - Content certificate distribution protocol: Used for HTTPS support

Next steps

- Collect feedback from the WG
 - Does the use cases and protocol changes proposal look reasonable?

• We will work on this use case and a solution in the H2020 FLAME project with experiments planned for early 2018 and beyond