draft-ietf-stir-oob-01
Out of Band

STIR WG IETF 100 Singapore
Nov 2017
Limits of RFC4474bis

• It’s in-band – end-to-end IP-IP
 – At best, it addresses the SIP-to-SIP use case
 – Not going to help with SIP-to-PSTN, PSTN-to-PSTN
 • Import for transitional adoption, legacy networks, enterprises, etc.
 – We did in-band first because existing deployments need it
 • Like the IPNNI, now the SHAKEN profile

• Even some IP-IP deployments may not pass Identity e2e
 – Difficult to anticipate what will survive administrative boundaries
 • You can understand “boundaries” pretty broadly
 – And some existing deployments might just block Identity
 • As they block all new headers; especially B2BUAs
Basic STIR Out of Band

Call Placement Service

CPS

Store PASSporT

Retrieve PASSporT

PSTN

POTS Call

Smart Phone

Smart Phone

Smart Phones are not just mobile phones, and not just end-user devices
Obvious Questions

• Okay, how does the originating side know where to find a CPS?
 – And how do we make sure the terminating side comes to exactly the same conclusion?
 • Need a CPS discovery mechanism
 • A few initial ideas in the draft now – not the focus today

• How do we make sure the right parties store and retrieve PASSporTs from a CPS?
 – Mostly, to manage the risk that someone other than the called party will fetch them? Or just record who fetched what?
 • Significant privacy concerns

• These are the things we’re trying to lock down now
Who can put and get PASSporTs?

This is why it’s hard to require authorization for storage
Also Tricky: Optimizing for Privacy

• We want to minimize potential metadata collection
 – Give the CPS as little insight into calls as possible
• The called and calling party should have no required preassociation
 – Except as needed for key discovery and CPS discovery
 • We are assuming both sides have STIR credentials
• Need some way to store PASSporTs such that they can be found
 – CPS needs to index store PASSporTs based on some public fact about the called/calling parties
 – e.g. “Give me PASSporTs for the called number (me?)”
Overview of the Approach

• Allow anyone to store encrypted PASSporTs, indexed at the CPS by the called party’s public key
 – PASSporTs are encrypted with a key of the target
 • CPS cooperates with a cert cache, allows retrieving of public keys by target TN
 – Might give you multiple keys for the same TN: carrier, reseller, user, etc.

• Allow anyone to retrieve any PASSporTs
 – CPS always returns at least one encrypted blob when asked for a PASSporT for a given public key
 • Whether there is a call in progress or not
 – Only the intended recipient will be able to decrypt real PASSporTs and determine that there is a legit call in progress
Benefits of the solution

• Encryption really limits what the CPS sees
• Difficult to poll the server to learn about calls in progress
• Indexing by the public key, rather than the called party number, works better with multiple certs
 – Calling party may need to store multiple PASSporTs if multiple entities hold credentials for a number
 • Carrier, service bureau, enterprise, etc.
Flood prevention

• PASSporTs are signed, so it almost doesn’t matter who stores them
 – Almost – need some kind of DDoS protection from attackers storing millions of bogus PASSporTs

• The authority to store might still require a STIR credential
 – But don’t want to have to authenticate a storing party with a STIR cert, that reveals the calling party to the CPS
 – Possible to limit storage with some kind of fancy tokens based on having a valid STIR cert
 • Effectively pre-associate with the CPS before storing
 • Acquire a token you spend to store a PASSporT later
 – Ways to get this to work for gateways, even
Service Discovery

• How many CPSs should there be, and how to you find them?

• The more we “federate” the CPS function, the more pressing service discovery becomes
 – Less monolithic CPS means no single point of monitoring
 • But how can the caller and callee agree on which CPS serves both?
 – How much pre-association does a caller need to have with a CPS to place a call?

• Similarly need to discover a credential service for OOB
 – A STIR cert could contain a field for the CPS that services the called party
 – That would make this the familiar credential discovery problem
 • Not a solved problem for operations, but lots of candidate protocols
Also, what about this case?

Maybe a SIP Identity-Encrypted header? RCD might need it anyway
Next Steps

- Sound good?
- To Do – beyond just architecture
 - Need to specify at least one CPS discovery mechanism
 - Need to describe the storage/retrieval protocol
 - Pro tip: it’s probably HTTP HTTP
 - Need to specify an OOB authentication and verification service procedure
 - Varies from RFC4474bis because that text is based on comparison to SIP fields
 - This needs to refer more abstractly to calls in progress and how the AS/VS does reference integrity