
Firmware Updates for
Internet of Things Devices

Brendan Moran, Milosch Meriac, Hannes Tschofenig

Drafts:

draft-moran-suit-architecture

draft-moran-suit-manifest

1

WHY DO WE CARE?

2

IoT needs a firmware update mechanism
Schneier in response to DDoS attacks using IP cameras

3

SCOPE

4

Starting with Low End IoT Devices

Low-end IoT Device

• Cortex M class device

• Class 1 device from
RFC 7228

• MPU, typically no cache

• High volume, low cost,
very energy efficient

• Often run no OS or a
small dedicated OS

Not a low-end IoT Device

• Cortex A / Cortex R-
based microcontroller

• MMU, cache, DDR RAM

• Sophisticated security
features (e.g., TrustZone)

• Use regular OS, such as
Linux

If developed solution also works for high-end IoT devices  Great!
If solution does not work on low end IoT devices  Fail! 5

https://www.arm.com/products/processors/cortex-m
https://tools.ietf.org/html/rfc7228#section-3

Working Group Scope

• Start small and extend later.

• Forming a working group soon helps to create
awareness that the IETF is working on this topic.
– We need to bring new community to the IETF, in

particularly those developing OSs for embedded
devices.

• Our preference is on the manifest format. No
or little conflict with other, ongoing
standardization activities in other SDOs.

6

WHY STANDARDS?

7

Value of Standards?

Interoperability

• IoT device developed by
vendor A works with device
management environment
developed by vendor B

• While OEMs care about their
devices they can re-use
available tools and services
developed by others.

• Server-side tools and IoT
device side tools often get
developed by different parties.

Re-Use

• Availability of best
technology knowhow to
develop a solution

• Open participation and
open standards

• Availability of open source
code and well-tested code

• Confidence in the technical
solution.

8

OUR CONTRIBUTION

9

Contribution

• Implemented solution uses ASN.1-based encoding.
– We are open to other encoding formats but we prefer to

have a small number (ideally 1).

– Integrated into mbed OS.

• Addresses security requirements outlined in
architecture and here.

• Focused on asymmetric crypto in the first release.
– We are planning to contribute a PSK-based solution to

address even lower-end devices.

• Backup slides explain complexity of the topic.

10

https://www.ietf.org/mail-archive/web/suit/current/msg00136.html

BACKUP

11

Firmware update

Consumers rarely update their devices.

Businesses don’t want the overhead of updating their devices.

This presents 5 types of problem:
– Device resilience to power failure, network loss, etc. (and

associated costs of device replacement)

– Management of the authority to update devices

– Privacy of the updates

– Status monitoring of devices targeted by an update

– Selection of which devices to update

Firmware update: the ideal

The model of firmware
update is simple:

– Devices go through a series
of steps:
• receive a new firmware

image from a trusted source

• install the new firmware
image

• boot into the new image

• the new image works
completely

• everything works seamlessly

Firmware update: the real

The reality of firmware update is
not so simple. Devices…

– lose network connection

– lose power

– receive firmware that doesn’t work

– receive firmware for the wrong
device

– receive firmware from untrusted
sources

– suffer flash memory failures on
installation

– fail to boot the new firmware

– fail while controlling equipment

FIRMWARE UPDATE:
RESILIENCE

15

Firmware update: resilience

Resilience decides how we
ensure that a device always
works.

To ensure that updates cannot
fail, there must be a piece of
code that cannot be updated.

We call this code the bootloader.
It ensures that only a valid image
is loaded.

Devices need to keep at least
two bootable images so that one
always works.

Firmware resilience: what kind of
bootloader?

Bootloaders have one
key differentiating
feature.

– Networked

– Non-networked (or,
static)

Boot Boot

App
1

App
2

App

Static
Bootloader

Networked
Bootloader

?

?

?

?

Networked bootloader: the ideal

The bootloader contains a
network driver, a network
stack, and a full update client.

The bootloader:
– Connects to an update

server

– Downloads an update

– Authenticates the update

– Installs the update

– Hands-over to the new
image

Networked bootloader: the real

Networked bootloaders are
large and complex, so the
risk is high that they
contain bugs.

The application and the
bootloader require similar
functionality.

The bootloader needs
access to authentication
data.

Static bootloader: the ideal

Static bootloaders are very
simple and cannot be
updated.

– The application contains the
update client.

– The update client:
• downloads a new application

image

• validates the image

• reboots

– The static bootloader picks
which image to boot

Static bootloader: the real

Application images are big.

Static bootloaders still need
drivers if off-chip firmware images
are used.

Sometimes, updates fail. The
bootloader must know how to
revert a failed update.

The bootloader cannot be
updated. No data or format used
by the bootloader can be changed.

The bootloader needs access to
authentication data.

Bootloaders: networked, or static?

Each has its own complexities.

There is no clear-cut answer.

These approaches are not
mutually exclusive:

– 2-stage boot
• Stage-1 static bootloader

• Stage-2 networked bootloaders

– Recovery image
• Static bootloader selects the

regular image, or a recovery
image that contains only the
update client

Firmware resilience: firmware storage
Where should a new image be stored?

On-chip, in the existing flash
Off-chip, on an external
storage device

Boot

Candid
ate
App

On Chip Storage

?

Active
App

?

Boot

Device

?

Active
App

?

Candid
ate
App

Off-chip storage

On-chip application image storage: the ideal

The safest place to store an
application image is on-chip.

– Any code that can modify the
image could equally modify
the bootloader and remove
any authenticity checks

– Only flash In-Application-
Programming drivers are
needed, so there are fewer
points of failure

– The bootloader can (and
should) be very simple

On-chip application image storage: the real

The application is granted at
most half of the remaining flash
after the bootloader is installed.

On-chip flash is vastly more
expensive than off-chip flash.

Images can be stored at more
than one location, so one of
these strategies is necessary:

– Copy the candidate image to
the active image location

– Execute the candidate in-place

Off-chip application image storage: the ideal

There’s plenty of storage off-
chip.

– Off-chip storage is
inexpensive and plentiful.

– It allows a device to store
many images

– It can be secured using
simple cryptographic
primitives

– It is simple to access

– It reduces flash cycles on the
internal flash

Off-chip application image storage: the real

Off-chip flash is cheap, but it’s not
free.

The security isn’t trivial.

Large storage space has challenges.
– A large off-chip storage requires

management of where to store each
image

– Image management begins to look
like a filesystem

– Filesystems need journaling to
withstand power loss

– It appears convenient to use for
application purposes as well as
update storage

Application image storage: on- or off-chip?

There are no clear-cut
answers.

There are pros and
cons for each.

Each design needs to
weigh the trade-offs.

FIRMWARE UPDATE:
AUTHORITY

29

Firmware update: authority

Authority in firmware update
answers several questions:

– Who gets to write firmware?

– Who gets to install it?

– Who decides if it’s been tested
enough?

– Who decides if it’s going to work
on this network

– Who chooses when to install it?

There are two immediate options:
– Use TLS with a trusted server

– Use code signing Device

Firmware update over TLS

TLS certificate
infrastructure does
authentication.

We can make the
server choose who has
what authority.

Firmware update over TLS: the ideal

Developers authenticate with the
TLS server to start firmware
updates.

– Each device trusts the update
server completely.

– The update server manages
access control.
• The developer logs in to the update

server and uploads a firmware.

• The update server decides whether
or not to send the update, based on
the developer’s permissions

– Devices only need to trust one set
of credentials.

Firmware update over TLS: the real

A centralized trust
system creates a
centralized point of
failure.

This presents a
number of risks.

Firmware update with code signing

Devices verify the firmware, not the connection.
– The device still trusts a certificate

– The certificate identifies a firmware author

Firmware update with code signing: the ideal

An author can sign the firmware
image before it is distributed.

– The devices trust the developer
directly.

– The device verifies the signature
of the firmware image before
installing it.

– The risks posed by a centralized
system are reduced because the
author is trusted directly

– The author can perform signing on
a very secure machine, such as a
Hardware Security Module, which
further reduces risk

Firmware update with code signing: the real

Devices are now responsible for
access control.

Firmware authors are now
responsible for security.

Devices must perform public key
operations for each update.

Devices are exposed to increased
risk from old firmware.

Devices must download the
whole image before they can
check the signature.

Firmware update: transport security or code
signing?

Code signing has significant benefits for security.
– Widely accepted practice in software, driver

distribution.

– Signed metadata takes this one step further,
offering early validation.

– This still doesn’t prevent a device from
downloading the whole image before hash
validation.

– Devices need to manage access control.

Transport security offloads the burden of access
control.

– Devices aren’t required to handle access rights of
individual firmware authors.

– They place the burden of maintaining security on
the server.

FIRMWARE UPDATE:
PRIVACY

38

Firmware update privacy

To avoid exposing the
firmware to a third party, it
should be encrypted.

There are a number of
ways to do this.

– Use transport security

– Encrypt the firmware
image for each device

– Encrypt the firmware
image for all devices Device

Firmware update with transport security

To ensure that a firmware image
is not exposed to a third party, it
can be transmitted over a
secure transport, such as TLS.

– The author uploads the payload
in plaintext to the server.

– The server negotiates a session
key with each device.

– The server sends the payload
over an unique encrypted link
to each device.

Firmware update with transport security: the
ideal

TLS provides adequate security
for encrypted firmware
distribution.

– Modern webservers are more
than capable of handling
distribution of firmware over
TLS, to many devices.

– Existing techniques make this
easy.

– The server has granular access
control over which devices
receive a firmware image.

Firmware update with transport security: the
real

The update server must
be managed by a trusted
party.

The device must trust
the credentials of the
update server.

Transport security is not
friendly to broadcast or
mesh networks.

Firmware update with per-device encryption

The firmware author encrypts
an unique copy of the firmware
for every recipient device.

– The firmware author builds a
new firmware image

– They encrypt one copy of it for
every device

– They upload all of these copies
to a distribution service

– Each device downloads its own
firmware image and decrypts it

Firmware update with per-device encryption:
the ideal

The firmware’s privacy is
guaranteed.

– The firmware author knows
each device’s encryption key.

– The firmware will not be
exposed to the operators of
any third-party service.

– No credential negotiation
with the server is necessary

– There is no risk of confusing
signing and transport
credentials

Firmware update with per-device encryption:
the real

Key management is hard.

Per-device encryption
doesn’t scale.

Per-device encryption is
not friendly to broadcast
or mesh networks.

Firmware update with single image
encryption

A single, encrypted firmware
image is distributed.

– Each device also receives a
copy of the image decryption
key, encrypted using its
unique encryption key.

– The device decrypts this with
its unique encryption key.

– The device uses the image
decryption key to decrypt the
image

Firmware update with single image
encryption: the ideal

Now the image need only
be stored once, and
distributed once.

– The image is safe from
exposure to a third party.

– The image is only stored
once.

– Only the minimum of
information necessary for
security is uniquely
distributed to each device.

Firmware update with single image
encryption: the real

Key management is
still hard.

There is an extra step
in the update process.

Firmware update: which kind of privacy?

Single image encryption has a lot of
benefits.

– Each option requires some amount of key
management.

– Single image encryption is the most
scalable.

Exposure of payload contents is of equal
risk for each of these solutions.

FIRMWARE UPDATE:
MONITORING

50

Firmware update monitoring

Devices need to report:
– Their current firmware version

– The status of the last update

– Progress of the current download

– The types of payloads accepted

– The version of metadata
accepted

Each device reports its invariant
information when it connects to
the monitoring server.

Devices report variant
information when it changes.

Firmware update monitoring: the ideal

The monitoring server
aggregates the information
from devices and presents it
to the user who is managing
the update.

– Users can see, at a glance,
the status of all their
devices.

– Errors are highlighted and
corrective actions are
suggested to the user.

Firmware update monitoring: the real

The data collected scales with
the number of active devices.

The devices need to decide
which errors are recoverable
and which are not.

Errors which are not
recoverable must be
communicated to the
operator.

Decisions are made based on
monitoring reports.

FIRMWARE UPDATE:
TARGETING

54

Targeting firmware update

Only the correct devices
should be targeted for a
firmware update.

– Operators select the
devices that they want
to be targeted with
updates

– Each update is only
delivered to a targeted
device

Targeting firmware update: the ideal

The operator can select a group of
devices.

– They can be confident that all relevant
devices are targeted

– They can select devices by a variety of
parameters, such as: Vendor & Model,
Current firmware version, Owner,
Geographic location

– The operator can instruct the system to
update some or all devices automatically
when the vendor publishes new
firmware

– When a device comes online for the first
time, it is automatically updated

– The operator can select a phased roll-out
to minimize risk

Targeting firmware update: the real

The operator can’t target an
offline device.

First-time-update has
authority problems.

Targeting devices is either
too precise or too imprecise.

If devices must coordinate, a
phased roll-out could cause
device interactions to break.

SUMMARY

58

Building firmware update

It seems like it should be easy.

There are many subtle ways that things can go wrong in five areas:
– Device resilience to power failure, network loss, etc.

– Management of the authority to update devices

– Privacy of the updates

– Status monitoring of devices targeted by an update

– Selection of which devices to update

Each of these issues requires careful considerations and tradeoffs
to be made.

For some issues, there are no clear answers.

	Slide 1
	Why do we care?
	Slide 3
	Scope
	Starting with Low End IoT Devices
	Working Group Scope
	Why Standards?
	Value of Standards?
	Our contribution
	Contribution
	Backup
	Firmware update
	Firmware update: the ideal
	Firmware update: the real
	Firmware update: Resilience
	Firmware update: resilience
	Firmware resilience: what kind of bootloader?
	Networked bootloader: the ideal
	Networked bootloader: the real
	Static bootloader: the ideal
	Static bootloader: the real
	Bootloaders: networked, or static?
	Firmware resilience: firmware storage
	On-chip application image storage: the ideal
	On-chip application image storage: the real
	Off-chip application image storage: the ideal
	Off-chip application image storage: the real
	Application image storage: on- or off-chip?
	Firmware update: authority
	Firmware update: authority
	Firmware update over TLS
	Firmware update over TLS: the ideal
	Firmware update over TLS: the real
	Firmware update with code signing
	Firmware update with code signing: the ideal
	Firmware update with code signing: the real
	Firmware update: transport security or code signing?
	Firmware update: privacy
	Firmware update privacy
	Firmware update with transport security
	Firmware update with transport security: the ideal
	Firmware update with transport security: the real
	Firmware update with per-device encryption
	Firmware update with per-device encryption: the ideal
	Firmware update with per-device encryption: the real
	Firmware update with single image encryption
	Firmware update with single image encryption: the ideal
	Firmware update with single image encryption: the real
	Firmware update: which kind of privacy?
	Firmware update: monitoring
	Firmware update monitoring
	Firmware update monitoring: the ideal
	Firmware update monitoring: the real
	Firmware update: targeting
	Targeting firmware update
	Targeting firmware update: the ideal
	Targeting firmware update: the real
	Summary
	Building firmware update

