Small IoT Security

Small Keccak Cryptography Advancing Security into Small Things

IETF 100 Singapore

Robert Moskowitz HTT Consulting

- What is Keccak?
 - New approach to symmetric cryptography
 - 'Sponge function'
 - Total break from traditional ARX (Addition, Rotation, and XOR)
 - Learn more at https://keccak.team
 - Maximum strength Keccak (b = 1600) selected for SHA-3
 - FIPS 202 and SP 800-185
 - Optimized for 32 and 64 bit, multi-core CPUs and large messages
 - Basis for Ketje in CAESAR crypto competition

Keccak Sponge Function

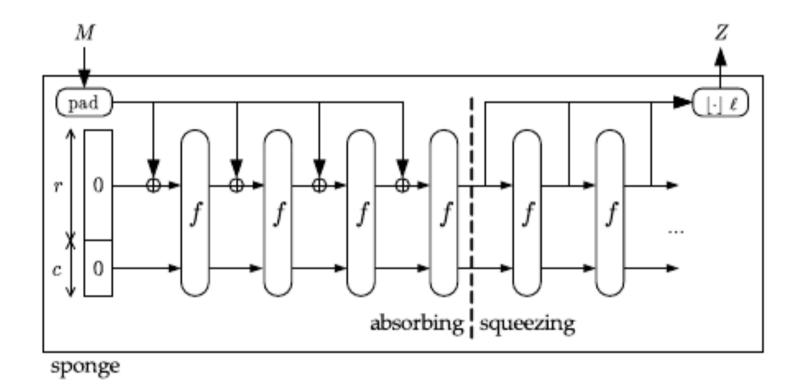


Figure 2.1: The sponge construction $Z = \text{sponge}[f, \text{pad}, r](M, \ell)$

https://keccak.team/files/CSF-0.1.pdf

- Keccak provides a complete symmetric cryptography solution
 - Cryptographic Hash
 - Keyed Hash
 - PRF Pseudo Random Function
 - Data encryption with Additional Authenticated Data (AEAD cipher) – Ketje
- Single primitive to implement
 - Replacing AES, HMAC, SHA-2, etc.

- Keccak is highly parameterized and comes in all 'sizes'
 - B ('width') = (25, 50, 100, 200, 400, 800, 1600)
 - 25 and 50 called 'toy' for learning about Keccak
 - Keccak defines a bitrate, r, rather than block size
 - r = b c
 - Where capacity, c, determines the proven strength against generic attacks
 - For a strength of n bits, c = 2n
 - Thus b = 400 can deliver 128 bits of proven strength with c = 256 and r = 144

- Keccak strength also a function of rounds
 - 24 rounds defined
 - Attacks against 6 rounds published
 - 'Easy' to increase rounds if higher round attacks develop
 - Rounds just another Keccak parameter
 - Can even reduce rounds for performance where 'little risk', though not advised

- Keccak b = 400 well tuned for Truly constrained IoT
 - r = 144 well suited for small messages
 - 128 bit strength more than adequate
 - SHAKE128 based on b = 400 out-performs SHA-2 with smaller code size
 - Factor of 10 observed
 - KMAC out-performs HMAC with smaller code size
 - Ketje SR out-performs AES-CCM
 - 4 byte block, 8 byte tag

Keccak Duplex Construction Used by Ketje

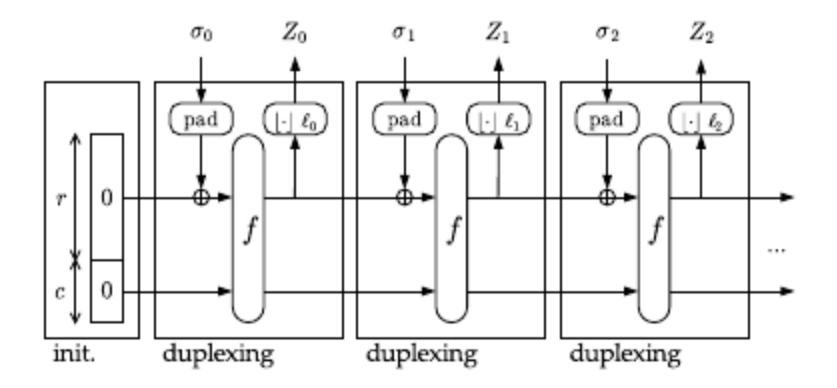


Figure 2.2: The duplex construction

- Status of work
 - Skeleton draft published
 - Draft-moskowitz-small-crypto
 - Work progressing on extracting performance and security text from existing Keccak documents for ID
 - Open code exists on keccak.team site
- Next steps
 - Add Keccak b =400 to protocols (CCI, IPsec, HIP, TLS) that is write Drafts
 - Develop PoC IoT devices

Discussions