
Guidelines for Racing During
Connection Establishment

—or—

What Are We Connecting to,
Anyway?

draft-pauly-taps-guidelines-01

Tommy Pauly
TAPS

IETF 100, November 2017, Singapore

1

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 2

Now focused solely on the use of Racing during
Connection Establishment

Generalizes Happy Eyeballs (RFC6555 and draft-
ietf-v6ops-rfc6555bis) beyond addresses

Attempt at making the racing algorithm more
normative and deterministic via SHOULDs

Draft Updates

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 3

Draft recommends viewing connection
establishment racing as a tree.

Defines notation for summarizing connection
attempts as [Endpoint, Path, Protocol]:

 1 [www.example.com:80, Any, TCP]
 1.1 [www.example.com:80, Wi-Fi, TCP]
 1.1.1 [192.0.2.1:80, Wi-Fi, TCP]
 1.2 [www.example.com:80, LTE, TCP]
 1.2.1 [192.0.2.1:80, LTE, TCP]
 1.2.2 [2001:DB8::1.80, LTE, TCP]

Connection Tree

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 4

Types of racing are strictly ordered:
1. Path racing (e.g. Wi-Fi, then LTE)
2. Protocol Stack racing (e.g. QUIC then HTTP/2)
3. Derived Endpoint racing (e.g. IPv6 then IPv4)

Other orderings are liable to cause errors:
• Resolved endpoints and supported protocols

may be specific to a network path
• Endpoint attributes (ports, proxies) are specific

to a protocol stack

Branching Types

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 5

There are three approaches to racing:

1. Simultaneous (don’t do this one!)

2. Timer Delayed (based on historical data)

3. Failover (used when there is a strong policy
preference)

Racing Methods

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 6

Once one attempt has successfully established,
other attempts are not used (may be cancelled)

Establishment can have several interpretations:

• Transport handshake complete (TCP)

• Security handshake complete (TLS)

• Useful application data received (HTTP
Response)

Determining Establishment

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 7

Both describe Happy Eyeballs algorithm for
protocol stacks (SCTP v TCP, QUIC v HTTP/2,
Proxy v Direct)

Both recommend historical databases of which
protocols work on different paths to order options

Both determine attempts as a combination of:
• Application preferences via API
• System policy
• Historical data

Draft Commonalities
draft-pauly-taps-guidelines & draft-grinnemo-taps-he

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 8

Should the system try protocols the app didn’t
explicitly ask for?
✓ More likely to try non-“default” protocol
✖ No reason to believe the server will support the protocol,

incurring many failures

Should the racing be flat or less structured than a
tree?
✓ More combinations allowed, and more orderings of

attempts
✖ Easier to try “invalid” connection attempts that will fail or

connect to the wrong peer

Draft Differences
draft-pauly-taps-guidelines & draft-grinnemo-taps-he

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 9

Connection options must be determined by the
application or the network, not the library

Happy Eyeballs employs racing between
addresses received via DNS
TLS can indicate QUIC & HTTP/2 support via
ALPN
Application knows expected server configuration
(ports, protocols, options) beforehand

What Are We Connecting to, Anyway?

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 10

Vague application preferences:
Low latency
Allow unreliable or out-of-order
High priority
Cheapest interface

Strict application preferences:
Prohibit cellular interfaces
Server supports both SCTP and TCP

What Are We Connecting to, Anyway?

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 11

Vague application preferences:
Low latency
Allow unreliable or out-of-order
High priority
Cheapest interface

Strict application preferences:
Prohibit cellular interfaces
Server supports both SCTP and TCP

What Are We Connecting to, Anyway?

Implementation
can interpret

Implementation
must follow

One of the main points of TAPS is to let an
implementation of the transport library be

flexible and not ossify on just one protocol stack

But what has caused ossification so far?

12

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 13

Possible Culprit 1: Applications using code only
compatible with one protocol

• True for IPv6 transitions, where applications only
handle AF_INET

• Is this true for transport protocols?

• Often for socket options

• …but isn’t SOCK_STREAM “generic”?

Avoiding Ossification

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 14

Possible Reason 2: Libraries inferring acceptable
protocols based on “generic” options

• The generic stream socket API, SOCK_STREAM, has
come to mean “use TCP”, tying a mode of data
transport to the protocol underneath

• Would have been better to separate “streams” from
TCP, so we could use streams over QUIC, etc

• A TAPS solution that always tries the same set of
protocols for certain options will lead to the same
ossification

Avoiding Ossification

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 15

If solutions deploy new protocols or new protocol options, they likely
will rev their applications and servers at the same time

The TAPS API should:
• Allow applications to tune a “protocol options configuration” without

changing any code that managers or uses the transports.
• Prune or sort options based on which protocols best meet

application preferences.
• Race/Happy Eyeballs between options automatically.

The TAPS API should not:
• Attempt protocols not explicitly requested by the application or

some other system authority that knows what protocols might work.
• Create new “mappings” that always mean the same thing:

“streams” → TCP, or “Partial Reliability” → SCTP

Avoiding Ossification

Racing/H.E. - TAPS - T. Pauly, Apple - IETF 100 16

