ESN: Increasing TCP’s maximum window size

draft-bagnulo-tcpm-esn-00
M. Bagnulo & Y. Nishida
IETF100
Motivation

- TCP maximum window is determined by RCVWND + Window Scale Option
 - Max window is achieved with the maximum shift allowed by the WS option i.e. 14
 - Max window is roughly 2^{30} (1GByte)
- Imposes an upper bound to TCP’s maximum speed/bandwidth delay product
 - Example: with an RTT of 100 ms (frequent is intercontinental links), the max speed is 80Gbps, while 100Gbps technology is already available
Doubling Max window is easy!

• Window Scale maximum value of 14 is overly restrictive
 – Original motivation in RFC7323: distinguish “old” and “new” out of window segments
 – Not really necessary, only needed to determine out of window segments
• Simply allow WS value of 15 and obtain a maximum window of roughly 2^{31} (2GBytes)
 – Few other tweaks to provide backward compatibility
Beyond 2^{31} Max window

• If WS option is updated to allow values of 15 and higher, Max Window is limited by TCP’s sequence number
 – TCP seq number has 32 bits, so it limits the max window to 2^{31}.

• Max Window larger than 2^{31} requires extending TCP seq number
 – Longer term solution
 – Requires more changes
Increasing TCP sequence number

• Overall approach: Carry a prefix for the sequence number in a TCP option.

• Which option:
 – Define a new option: see draft-looney-tcpm-64-bit-seqnos
 – Re-purpose the existent Time Scale option: draft-bagnulo-tcpm-esn
Motivation for using the TS option

- RFC7323 defines two uses for the TS option
 - RTT measurement
 - PAWS: this is unnecessary with a longer seq number
 - Re-purposing TS for Extended Sequence Number (ESN) would subsume PAWS

- Reduced option space consumption
 - TCP options limited to 40B
 - Critical in the SYN
 - Grace-full fallback: carrying TS in SYN allows use PAWS in case ESN is not supported
 - Deployability: unknown options are more likely to experience problems

<table>
<thead>
<tr>
<th>Option</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS</td>
<td>2</td>
</tr>
<tr>
<td>SACK permit</td>
<td>2</td>
</tr>
<tr>
<td>WS</td>
<td>3</td>
</tr>
<tr>
<td>TS</td>
<td>10</td>
</tr>
<tr>
<td>TFO</td>
<td>6/18</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
</tr>
</tbody>
</table>
ESN mechanism

• Modify WS and TS
• WS modification

• TS modification
 – TS has 10B, 8 are used for TSval and Tsecr
 – Use 8 B to carry information about Sequence Number Prefix and ACK number prefix
 • Seq number composed as Prefix (carried in TS) + Seq Number (carried in TCP seq number field)
 • Same for ACKs.
RTTM

• Goal: preserve use of TS option for RTTM
• Option 1:

| Kind=8 | Length | F1 | Tsval or Seq num Pref | F2 | Tsecr or ACK Prefix |

– Use two flags to indicate if the option carries Seq number/ACK prefixes or carries TS and TS echo values.
 • 63 bit sequence number
 • Sporadic use of RTTM
 – Segments carrying RTTM info don’t carry Prefix, so max flight-size is 2^{32} when segments with RTTM info in flight!!!!
 – In addition, potential problems with old dup packets
RTTM (2)

• Option 2: Always carry Seq num prefix, and either carry ACK prefix or Timestamp

<table>
<thead>
<tr>
<th>Kind=8</th>
<th>Length</th>
<th>Res</th>
<th>Seq num Pref</th>
<th>F</th>
<th>Timestamp / ACK Pref</th>
</tr>
</thead>
</table>

– 62 bit seq number
– 2-bit flag to indicate TSval, TSecr or ACK Pref
– Some segments do not carry ACK Pref, but cumulative ACK should deal with this
RTTM (2)

• Option 3: Use 16 bit fields for Seq num prefix, ACK prefix, TSval and TSecr.

<table>
<thead>
<tr>
<th>Kind=8</th>
<th>Length</th>
<th>Seq # Pref</th>
<th>ACK Pref</th>
<th>TSval</th>
<th>TSecr</th>
</tr>
</thead>
</table>

– 48 bit seq number (140 TB max win, good enough?)
– 16 bits to encode timestamps
 • Variable precision encoding, see trammell-tcpm-timestamp-interval
 • Other option is to send either the TSval or the Tsecr with 32 bits, which may be ok.
Final thoughts

• Increasing RCVWND seems to be a current need in some scenarios. (Inter DC communications)

• Increasing seq number will take a while since it implies significant changes.

• Two step approach: first doubling (affects only WS) and then increasing seq number
 – May be worth figuring both of them now, as both can be used to increase the seq number
Thoughts?