
More Accurate ECN Feedback in TCP
draft-ietf-tcpm-accurate-ecn-04

Bob Briscoe, CableLabs
Mirja Kühlewind, ETH Zürich

Richard Scheffenegger, NetApp

IETF-100 Nov 2017

 2

Problem (Recap)
Congeston Existence, not Extent

● Explicit Congestion Notification (ECN)
– routers/switches mark more packets

as load grows
– RFC3168 added ECN to IP and TCP

● Problem with RFC3168 ECN feedback:
– only one TCP feedback per RTT
– rcvr repeats ECE flag for reliability, until sender's CWR flag acks it
– suited TCP at the time – one congestion response per RTT

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Port no’s, Seq no’s...

 Data
Offset

Res-
erved

N
S

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer

TCP Options...

IP-
ECN

Codepoint Meaning

00 not-ECT No ECN

10 ECT(0)
ECN-Capable Transport

01 ECT(1)

11 CE Congestion Experienced

 3

Solution (recap)
Congestion extent, not just existence

● AccECN: Change to TCP wire protocol
– Repeated count of CE packets (ACE) - essential
– and CE bytes (AccECN Option) – supplementary

● Key to congestion control for low queuing delay
● 0.5 ms (vs. 5-15 ms) over public Internet

● Applicability: (see spare slide)

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Port no’s, Seq no’s...

 Data
Offset

Res-
erved ACE

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer

TCP Options...

AccECN Option, length: min 2B, typ 5/8B, max 11B
TCP Options...

 4

Fall-back if IP/ECN bleached/mangled

● We thought ECN traversal was surprisingly perfect
...until the latest measurement study*

● ~60% of those mobile operators measured bleach upstream ECN by 1st IP hop
● Prob. prevalent bug that wipes ECN as side effect of Diffserv bleaching

● Solution: Feed back (in the 3 TCP/ECN flags) which of 4 possible
IP/ECN codepoints arrived on:
– SYN : in SYN-ACK
– SYN/ACK : in ACK of 3WHS

● (With TFO, this ACK is not reliably delivered)

● If mangled, disable ECN for half connection

Octets 1-4 of
IPv4 header

* see ECN++ presentation (IETF-100 tcpm),
or http://www.it.uc3m.es/amandala/ecn++/

SYN
IP

ACK
IP

SYN/ACK

IP

 5

Feedback of IP/ECN during 3WHS

● Same coding on ACK
● ACE counter in prev. drafs

Notes:
1) Could be TCP bleaching
2) Used by RFC5562 + SYN cookie
3) Currently Unused

 +--------+--------+------------+--------------+------------------------+
 | A | B | SYN A->B | SYN/ACK B->A | Feedback Mode |
 +--------+--------+------------+--------------+------------------------+
		AE CWR ECE	AE CWR ECE	
AccECN	AccECN	1 1 1	0 1 0	AccECN (Not-ECT on SYN)
AccECN	AccECN	1 1 1	0 1 1	AccECN (ECT1 on SYN)
AccECN	AccECN	1 1 1	1 0 0	AccECN (ECT0 on SYN)
AccECN	AccECN	1 1 1	1 1 0	AccECN (CE on SYN)
AccECN	Nonce	1 1 1	1 0 1	classic ECN
AccECN	ECN	1 1 1	0 0 1	classic ECN
AccECN	No ECN	1 1 1	0 0 0	Not ECN
: : : : : :				
AccECN	Broken	1 1 1	1 1 1	Not ECN
 +--------+--------+------------+--------------+------------------------+

 +--------------+---------------------------+------------------------+
ACE on ACK	IP-ECN codepoint on	Initial s.cep of
of SYN/ACK	SYN/ACK inferred by	server in AccECN mode
	server	
+--------------+---------------------------+------------------------+		
0b000	{Notes 1, 2}	Disable ECN
0b001	{Notes 2, 3}	5
0b010	Not-ECT	5
0b011	ECT(1)	5
0b100	ECT(0)	5
0b101	Currently Unused {Note 3}	5
0b110	CE	6
0b111	Currently Unused {Note 3}	5
 +--------------+---------------------------+------------------------+

SYN
IP

ACK
IP

SYN/ACK

IP
1

2

1

2

● Consumes last 2 combinations of
TCP/ECN flags on SYN/ACK

 6

Change Triggered ACKs

● SHOULD → “MUST with get-out clause”
● So that receiver can rely on the behaviour

● e.g. at flow-start when heuristics waste valuable time

“A concern has been raised that certain offload hardware needed for
high performance might not be able to support change-triggered ACKs,
although high performance protocols such as DCTCP successfully use
change-triggered ACKs.

One possible experimental compromise would be for the receiver to
heuristically detect whether the sender is in slow-start, then to
implement change-triggered ACKs in software while the sender is in
slow-start, and offload to hardware otherwise.

If the operator disables change-triggered ACKs, whether partially like
this or otherwise, the operator will also be responsible for ensuring a
co-ordinated sender algorithm is deployed;”

 7

Minor Edits

● Clarified that AccECN is not dependent on ECN
(of whatever flavour) in the network

● Experiment success criteria: added “deployed”
● Clarified that ‘Congestion Window Reduced’

signal is not used
● Defined behaviours for all unused values

(forward compatibility)

 8

Status & Next Steps
● Implemented in Linux(1)

● All open issues now closed
– Appendix B “Alternative Design Choices” DELETED
– Appendix C “Open Protocol Design Issues” DELETED

● Ready for WGLC

● Implemented in Linux(1)

● All open issues now closed
– Appendix B “Alternative Design Choices” DELETED
– Appendix C “Open Protocol Design Issues” DELETED

● Ready for WGLC

(1) https://github.com/mirjak/linux-accecn

 9

AccECN

Q&A
spare slides

 10

Where AccECN Fits
● Can only enable AccECN if both TCP endpoints support it (1)

● but no dependency on network changes

● Extends the feedback part of TCP wire protocol
● Foundation for new sender-only changes (and for existing TCP), e.g.

– congestion controls (TBA):
● 'TCP Prague' for L4S (2)

● BBR+ECN

– Full benefit of ECN-capable TCP control packets (ECN++) (3)

(1) Backwards compatible handshake
● SYN: offer AccECN

SYN-ACK can accept AccECN, ECN or non-ECN

(2) Low Latency Low Loss Scalable throughput [draft-ietf-tsvwg-l4s-arch]

(3) Without AccECN, benefit of ECN++ excluded from SYN [draft-ietf-tcpm-generalized-ecn]

wire protocol
(both ends)

congestion control
(sender only)

TCP/IP

TCP-AccECN other transports

Reno, Cubic, ... Prague, BBR, ... various CCs

TCP-ECNTCP

IP
ECN++

transport
sublayers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

